

# **Operation Manual**

Goodrive100-PV Series Solar Pump Inverter



# **Contents**

| 1 Safety precautions                        | 1  |
|---------------------------------------------|----|
| 1.1 Safety definition                       | 1  |
| 1.2 Warning                                 | 1  |
| 1.3 Safety guidelines                       | 2  |
| 1.3.1 Delivery and installation             | 2  |
| 1.3.2 Commissioning and running             | 3  |
| 1.3.3 Maintenance and component replacement | 3  |
| 1.3.4 Scrap treatment                       | 4  |
| 2 Product overview                          | 5  |
| 2.1 Unpacking inspection                    | 5  |
| 2.2 Product nameplate                       | 5  |
| 2.3 Model designation code                  | 5  |
| 2.4 Product specifications                  | 6  |
| 2.5 Product ratings                         | 7  |
| 2.6 Product dimensions and weight           | 8  |
| 3 Installation guidelines                   | 10 |
| 3.1 Mechanical installation                 | 10 |
| 3.1.1 Installation environment              | 10 |
| 3.1.2 Installation direction                | 11 |
| 3.1.3 Installation method                   | 11 |
| 3.2 Standard wiring                         | 15 |
| 3.2.1 Main circuit terminals                | 15 |
| 3.2.2 Control circuit terminals             | 17 |
| 3.2.3 Input/output signal connection figure | 20 |
| 4 Keypad operation guidelines               | 22 |
| 4.1 Keypad introduction                     | 22 |
| 4.2 Keypad display                          | 24 |
| 4.2.1 Displaying stopped-state parameters   | 24 |
| 4.2.2 Displaying running-state parameters   | 24 |
| 4.2.3 Displaying fault information          | 25 |
| 4.2.4 Editing function codes                | 25 |
| 4.3 Operation procedure                     | 25 |
| 4.3.1 Modifying function codes              | 25 |
| 4.3.2 Setting a password for the inverter   | 26 |
| 4.3.3 Viewing inverter status               | 26 |
| 4.3.4 Locking the keypad                    | 26 |
| 5 Commissioning guidelines                  | 28 |

| 5.1 Check before running                                                | 28  |
|-------------------------------------------------------------------------|-----|
| 5.2 Trial run                                                           | 28  |
| 5.3 Parameter settings                                                  | 28  |
| 5.4 Advanced settings                                                   | 28  |
| 5.4.1 Water discharge speed PI adjustment                               | 28  |
| 5.4.2 Special settings for single phase motors                          | 29  |
| 6 Function parameter list                                               |     |
| 6.1 Function parameters related to control                              | 30  |
| P00 group Basic functions                                               | 30  |
| P01 group Start and stop control                                        |     |
| P02 group Parameters of motor 1                                         | 34  |
| P04 group Space voltage vector control                                  | 35  |
| P05 group Input terminals                                               | 38  |
| P06 group Output terminals                                              | 39  |
| P07 group Human-machine interface                                       | 41  |
| P08 group Enhanced functions                                            | 47  |
| 6.2 Function parameters special for solar pump                          | 48  |
| P11 group Protection parameters                                         | 48  |
| P14 group Serial communication                                          | 50  |
| P15 group Functions special for solar inverter                          | 52  |
| P17 group Status viewing                                                | 65  |
| P18 group Status viewing functions special for solar inverters          | 65  |
| P19 group Functions for voltage boost (inverter module communicates wit |     |
| module through RS422 communication)                                     | 66  |
| 7 Fault diagnosis and solution                                          | 69  |
| 8 Communication protocol                                                | 74  |
| 8.1 Brief instruction to Modbus protocol                                | 74  |
| 8.2 Application of the inverter                                         |     |
| 8.2.1 2-wire RS485                                                      |     |
| 8.2.2 RTU mode                                                          | 77  |
| 8.2.3 ASCII mode                                                        |     |
| 8.3 Command code and communication data                                 |     |
| 8.3.1 RTU mode                                                          |     |
| 8.3.2 ASCII mode                                                        | 85  |
| 8.4 Data address definition                                             | 87  |
| 8.4.1 Function code address format rules                                |     |
| 8.4.2 Description of other function addresses in Modbus                 | 88  |
| 8.4.3 Fieldbus ratio values                                             | 92  |
| 8.4.4 Error message response                                            | 93  |
| 9.5. Pand/Mrita appration example                                       | 0.5 |

| 8.5.1 Examples of reading command 03H                                        | 95  |
|------------------------------------------------------------------------------|-----|
| 8.5.2 Examples of writing command 06H                                        | 96  |
| 8.5.3 Examples of continuous writing command10H                              | 98  |
| 8.6 Common communication faults                                              | 99  |
| Appendix A Options                                                           | 101 |
| A.1 Boost module                                                             | 101 |
| A.2 GPRS module and monitoring APP                                           | 102 |
| A.3 Cable                                                                    | 103 |
| A.3.1 Power cable                                                            | 103 |
| A.3.2 Control cable                                                          | 103 |
| A.4 Harmonic filter                                                          | 105 |
| A.5 Filter                                                                   | 107 |
| Appendix B Recommended solar module configuration                            | 108 |
| B.1 Recommended solar module configuration for solar pump inverters          | 108 |
| B.2 Recommended solar module configuration for inverters with boost module . | 109 |
| Appendix C Power frequency & PV switching solution                           | 110 |
| C.1 Solution introduction                                                    | 110 |
| C.1.1 QH100-PV switching module                                              | 110 |
| C.1.2 Model selection reference for low-voltage apparatuses                  | 112 |
| C.2 IP54 protection-level inverters                                          | 113 |
| C.3 Wiring description                                                       | 115 |
| C.4 Parameter setting method                                                 | 116 |
| Appendix D Dimension drawings                                                | 117 |
| D.1 External keypad structure                                                | 117 |
| D.2 Dimensions of wall mounting                                              | 118 |
| D.3 Dimensions of rail mounting                                              | 121 |
| D.4 Dimensions of flange mounting                                            | 122 |
| D.5 Dimensions of floor mounting                                             | 124 |
| Appendix E Further information                                               | 126 |
| E.1 Product and service quiries                                              | 126 |
| E.2 Feedback of INVT inverter manuals                                        | 126 |
| E.3 Document library on the Internet                                         | 126 |

# 1 Safety precautions

Please read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the inverter. If ignored, physical injury or death may occur, or damage may occur to the devices.

If any physical injury or death or damage to the devices occurs for ignoring to the safety precautions in the manual, our company will not be responsible for any damages and we are not legally bound in any manner.

# 1.1 Safety definition

Danger: Serious physical injury or even death may occur if not follow

relevant requirements

Warning: Physical injury or damage to the devices may occur if not follow

relevant requirements

**Note:** Physical hurt may occur if not follow relevant requirements

Qualified People working on the device should take part in professional electricians: electrical and safety training, receive the certification and be

familiar with all steps and requirements of installing, commissioning, operating and maintaining the device to avoid

any emergency.

# 1.2 Warning

Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment, and advice on how to avoid the danger. Following warning symbols are used in this manual:

| Symbols   | Name                       | Instruction                                                                                   | Abbreviation |  |  |
|-----------|----------------------------|-----------------------------------------------------------------------------------------------|--------------|--|--|
| Danger    | Danger                     | Serious physical injury or even<br>death may occur if not follow the<br>relative requirements | 4            |  |  |
| Warning   | Warning                    | Physical injury or damage to the devices may occur if not follow the relative requirements    |              |  |  |
| Forbid    | Electrostatic<br>discharge | Damage to the PCBA board may occur if not follow the relative requirements                    | **           |  |  |
| Hot sides | Hot sides                  | Sides of the device may become hot. Do not touch.                                             |              |  |  |
| Note      | Note                       | Physical hurt may occur if not follow the relative requirements                               | Note         |  |  |

# 1.3 Safety guidelines

Only qualified electricians are allowed to operate on the inverter.

 Do not carry out any wiring and inspection or changing components when the power supply is applied. Ensure all input power supply is disconnected before wiring and checking and always wait for at least the time designated on the inverter or until the DC bus voltage is less than 36V. Below is the table of the waiting time:

| cev. Below to the table of the waiting time. |                        |                      |  |  |
|----------------------------------------------|------------------------|----------------------|--|--|
| Inver                                        | ter model              | Minimum waiting time |  |  |
| 1PH 220V 0.4kW-2.2kW                         |                        | 5 minutes            |  |  |
| 3PH 220V                                     |                        |                      |  |  |
| 3PH 380V                                     | 0.75kW-110kW 5 minutes |                      |  |  |
| 3PH 380V                                     | 132kW-315kW            | V 15 minutes         |  |  |
| 3PH 380V                                     | 355kW and higher       | higher 25 minutes    |  |  |



 Do not refit the inverter unauthorized; otherwise fire, electric shock or other injury may occur.



 The base of the radiator may become hot during running. Do not touch to avoid hurt.



The electrical parts and components inside the inverter are electrostatic.
 Take measurements to avoid electrostatic discharge during relevant operation.

# 1.3.1 Delivery and installation



- Please install the inverter on fire-retardant material and keep the inverter away from combustible materials.
- Do not operate on the inverter if there is any damage or components loss to the inverter.
- Do not touch the inverter with wet items or body, otherwise electric shock may occur.

#### Note:

- Select appropriate moving and installing tools to ensure a safe and normal running of the inverter and avoid physical injury or death. For physical safety, the erector should take some mechanical protective measurements, such as wearing safety shoes and working uniforms.
- Do not carry the inverter by its cover. The cover may fall off.
- Ensure to avoid physical shock or vibration during delivery and installation.
- Install away from children and other public places.
- The leakage current of the inverter may be above 3.5mA during operation. Ground with proper techniques and ensure the grounding resistor is less than 10Ω. The conductivity of

PE grounding conductor is the same as that of the phase conductor (with the same cross sectional area).

 (+) and (-) are DC power supply input terminals. R, S and T (L,N) are AC power supply input terminals. U, V and W are output terminals. Please connect the input power cables and motor cables with proper techniques; otherwise the damage to the inverter may occur.

#### 1.3.2 Commissioning and running



- Disconnect all power supplies applied to the inverter before the terminal wiring and wait for at least the designated time after disconnecting the power supply.
- High voltage is present inside the inverter during running. Do not carry out any operation except for the keypad setting.
- The inverter cannot be used as "Emergency-stop device".
- If the inverter is used to break the motor suddenly, a mechanical braking device shall be provided.

#### Note:

- Do not switch on or off the input power supply of the inverter frequently.
- For inverters that have been stored for a long time, check and fix the capacitance and try
  to run it again before utilization.
- Cover the front board before running, otherwise electric shock may occur.

# 1.3.3 Maintenance and component replacement



- Only qualified electricians are allowed to perform the maintenance, inspection, and components replacement of the inverter.
- Disconnect all power supplies to the inverter before the terminal wiring.
   Wait for at least the time designated on the inverter after disconnection.
  - Take measures to avoid screws, cables and other conductive materials to fall into the inverter during maintenance and component replacement.

#### Note:

- Please select proper torque to tighten screws.
- Keep the inverter, parts and components away from combustible materials during maintenance and component replacement.
- Do not carry out any isolation voltage-endurance test on the inverter and do not measure the control circuit of the inverter by megameter.

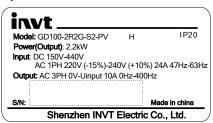
# 1.3.4 Scrap treatment



• There are heavy metals in the inverter. Deal with it as industrial effluent.



When the life cycle ends, the product should enter the recycling system.
 Dispose of it separately at an appropriate collection point instead of placing it in the normal waste stream.


# 2 Product overview

## 2.1 Unpacking inspection

Check as follows after receiving products:

- Check that there are no damage and humidification to the package. If not, please contact with local agents or INVT offices.
- Check the information on the type designation label on the outside of the package to verify that the drive is of the correct type. If not, please contact with local dealers or INVT offices.
- Check that there are no signs of water in the package and no signs of damage or breach to the inverter. If not, please contact with local dealers or INVT offices.
- Check the information on the type designation label on the outside of the package to verify that the name plate is of the correct type. If not, please contact with local dealers or INVT offices.
- Check to ensure the accessories (including user's manual and control keypad) inside the device is complete. If not, please contact with local dealers or INVT offices.

## 2.2 Product nameplate



#### Note:

- This is a nameplate example of a standard inverter product. The CE/TUV/IP20 marking on the top right will be marked according to actual certification conditions.
- "H" indicates the identifier of DC high withstand voltage products.

# 2.3 Model designation code

A model designation code contains product information. You can find the model designation code on the inverter nameplate and simplified nameplate.

# **GD100** - **5R5G** - **4 5** - **PV**

1 2 34 5

| Field                          | No. | Description Content                                                                                                                                     |                                                                                                                       |  |  |
|--------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Abbreviation of product series | 1   | Abbreviation of product series                                                                                                                          | GD is short for Goodrive.                                                                                             |  |  |
| Rated power                    | 2   | Power range<br>+ Load type                                                                                                                              | 5R5G—5.5kW<br>G—Constant torque load                                                                                  |  |  |
| Voltage class                  | 3   | Voltage class 4: AC 3PH 380V (-15%)–440(+10% 2: AC 3PH 220V (-15%)–240(+10% S2: AC 1PH 220V (-15%)–240(+10% S2: AC 1PH input/output 220V (-1: 240(+10%) |                                                                                                                       |  |  |
| Protection<br>level            | 4   | Protection<br>level                                                                                                                                     | Protection level. 5—IP54  Note: The protection level of a standard inverter is IP20, but this field is not displayed. |  |  |
| Industrial code                | 5   | Industry<br>code                                                                                                                                        | PV: Photovoltaic water pump series products                                                                           |  |  |

# 2.4 Product specifications

| Model                                  | -S                             | S2  | Ÿ       | 32  | Ÿ                          | 2    | -4                         | 4           |
|----------------------------------------|--------------------------------|-----|---------|-----|----------------------------|------|----------------------------|-------------|
| AC input voltage (V)                   | 220 (-15%)–240 (+10%)<br>(1PH) |     | ` ' ' ' |     | 220<br>15%)<br>(+10<br>(3F | -240 | 380<br>15%)<br>(+10<br>(3F | _440<br>0%) |
| Max. DC voltage (V)                    | 440                            | 500 | 440     | 500 | 440                        | 500  | 800                        | 900         |
| Start-up voltage (V)                   | 20                             | 00  | 20      | 00  | 20                         | 00   | 30                         | 00          |
| Min. working voltage<br>(V)            | 150                            |     | 15      | 50  | 15                         | 50   | 25                         | 50          |
| Recommended DC input voltage range (V) | 200–400                        |     | 200–400 |     | 200–400                    |      | 300–750                    |             |
| Recommended MPP voltage (V)            | 330                            |     | 33      | 30  | 33                         | 30   | 55                         | 50          |

# 2.5 Product ratings

| Series                         | Model             | Rated<br>output<br>power<br>(kW) | Rated input current (A) | Rated output<br>current (A) | Max. DC<br>input current<br>(A) |
|--------------------------------|-------------------|----------------------------------|-------------------------|-----------------------------|---------------------------------|
| -SS2 model                     | GD100-0R4G-SS2-PV | 0.4                              | 6.5                     | 4.2                         | 15                              |
| 1PH 220V                       | GD100-0R7G-SS2-PV | 0.75                             | 9.3                     | 7.2                         | 15                              |
| Input/output                   | GD100-1R5G-SS2-PV | 1.5                              | 15.7                    | 10.2                        | 15                              |
| (0.4-2.2 kW)                   | GD100-2R2G-SS2-PV | 2.2                              | 24                      | 14                          | 15                              |
|                                | GD100-0R4G-S2-PV  | 0.4                              | 6.5                     | 2.5                         | 15                              |
| -S2 model                      | GD100-0R7G-S2-PV  | 0.75                             | 9.3                     | 4.2                         | 15                              |
| 1PH 220V input<br>(0.4-2.2 kW) | GD100-1R5G-S2-PV  | 1.5                              | 15.7                    | 7.5                         | 15                              |
| (0.4-2.2 KVV)                  | GD100-2R2G-S2-PV  | 2.2                              | 24                      | 10                          | 15                              |
|                                | GD100-1R5G-2-PV   | 1.5                              | 7.7                     | 7.5                         | 15                              |
| -2 model                       | GD100-2R2G-2-PV   | 2.2                              | 11                      | 10                          | 15                              |
| 3PH 220V                       | GD100-004G-2-PV   | 4                                | 17                      | 16                          | 30                              |
| (1.5-7.5kW)                    | GD100-5R5G-2-PV   | 5.5                              | 25                      | 20                          | 30                              |
|                                | GD100-7R5G-2-PV   | 7.5                              | 33                      | 30                          | 45                              |
|                                | GD100-0R7G-4-PV   | 0.75                             | 3.4                     | 2.5                         | 15                              |
|                                | GD100-1R5G-4-PV   | 1.5                              | 5.0                     | 4.2                         | 15                              |
|                                | GD100-2R2G-4-PV   | 2.2                              | 5.8                     | 5.5                         | 15                              |
|                                | GD100-004G-4-PV   | 4.0                              | 13.5                    | 9.5                         | 15                              |
|                                | GD100-5R5G-4-PV   | 5.5                              | 19.5                    | 14                          | 30                              |
|                                | GD100-7R5G-4-PV   | 7.5                              | 25                      | 18.5                        | 30                              |
|                                | GD100-011G-4-PV   | 11                               | 32                      | 25                          | 30                              |
| 4                              | GD100-015G-4-PV   | 15                               | 40                      | 32                          | 45                              |
| -4 model<br>3PH 380V           | GD100-018G-4-PV   | 18.5                             | 47                      | 38                          | 45                              |
| (0.75-500kW)                   | GD100-022G-4-PV   | 22                               | 51                      | 45                          | 45                              |
| (0.70-000kV)                   | GD100-030G-4-PV   | 30                               | 70                      | 60                          | 75                              |
|                                | GD100-037G-4-PV   | 37                               | 80                      | 75                          | 90                              |
|                                | GD100-045G-4-PV   | 45                               | 98                      | 92                          | 105                             |
|                                | GD100-055G-4-PV   | 55                               | 128                     | 115                         | 120                             |
|                                | GD100-075G-4-PV   | 75                               | 139                     | 150                         | 180                             |
|                                | GD100-090G-4-PV   | 90                               | 168                     | 180                         | 210                             |
|                                | GD100-110G-4-PV   | 110                              | 201                     | 215                         | 255                             |
|                                | GD100-132G-4-PV   | 132                              | 265                     | 260                         | 300                             |

| Series | Model           | Rated<br>output<br>power<br>(kW) | Rated<br>input<br>current<br>(A) | Rated output<br>current (A) | Max. DC<br>input current<br>(A) |
|--------|-----------------|----------------------------------|----------------------------------|-----------------------------|---------------------------------|
|        | GD100-160G-4-PV | 160                              | 310                              | 305                         | 375                             |
|        | GD100-185G-4-PV | 185                              | 345                              | 340                         | 420                             |
|        | GD100-200G-4-PV | 200                              | 385                              | 380                         | 465                             |
|        | GD100-220G-4-PV | 220                              | 430                              | 425                         | 500                             |
|        | GD100-250G-4-PV | 250                              | 485                              | 480                         | 570                             |
|        | GD100-280G-4-PV | 280                              | 545                              | 530                         | 640                             |
|        | GD100-315G-4-PV | 315                              | 610                              | 600                         | 720                             |
|        | GD100-355G-4-PV | 355                              | 625                              | 650                         | 820                             |
|        | GD100-400G-4-PV | 400                              | 715                              | 720                         | 930                             |
|        | GD100-450G-4-PV | 450                              | 840                              | 820                         | 1050                            |
|        | GD100-500G-4-PV | 500                              | 890                              | 860                         | 1170                            |

# 2.6 Product dimensions and weight

| Model             | Outline dimensions | Package product outline dimensions | Net<br>weight | Gross<br>weight |
|-------------------|--------------------|------------------------------------|---------------|-----------------|
|                   | W*H*D (mm)         | W*H*D (mm)                         | (kg)          | (kg)            |
| GD100-0R4G-SS2-PV | 80*160*123.5       | 230*141*202                        | 0.9           | 1.1             |
| GD100-0R7G-SS2-PV | 80*185*140.5       | 252*138*215                        | 1.2           | 1.4             |
| GD100-1R5G-SS2-PV | 80*185*140.5       | 252*138*215                        | 1.2           | 1.4             |
| GD100-2R2G-SS2-PV | 80*185*140.5       | 252*138*215                        | 1.2           | 1.4             |
| GD100-003G-SS2-PV | 170*320*196.3      | 428*270*325                        | 6             | 7               |
| GD100-004G-SS2-PV | 170*320*196.3      | 428*270*325                        | 6             | 7               |
| GD100-0R4G-S2-PV  | 80*160*123.5       | 230*141*202                        | 0.9           | 1.1             |
| GD100-0R7G-S2-PV  | 80*160*123.5       | 230*141*202                        | 0.9           | 1.1             |
| GD100-1R5G-S2-PV  | 80*185*140.5       | 252*138*215                        | 1.2           | 1.4             |
| GD100-2R2G-S2-PV  | 80*185*140.5       | 252*138*215                        | 1.2           | 1.4             |
| GD100-004G-S2-PV  | 170*320*196.3      | 428*270*325                        | 6             | 7               |
| GD100-1R5G-2-PV   | 146*256*167        | 353*238*280                        | 3.1           | 3.5             |
| GD100-2R2G-2-PV   | 146*256*167        | 353*238*280                        | 3.1           | 3.5             |
| GD100-004G-2-PV   | 170*320*196.3      | 428*270*325                        | 6             | 7               |
| GD100-5R5G-2-PV   | 170*320*196.3      | 428*270*325                        | 6             | 7               |
| GD100-7R5G-2-PV   | 170*320*196.3      | 428*270*325                        | 6             | 7               |
| GD100-0R7G-4-PV   | 80*185*140.5       | 252*138*215                        | 1.2           | 1.4             |

| Model           | Outline dimensions<br>W*H*D (mm) | Package product<br>outline dimensions<br>W*H*D (mm) | Net<br>weight<br>(kg) | Gross<br>weight<br>(kg) |
|-----------------|----------------------------------|-----------------------------------------------------|-----------------------|-------------------------|
| GD100-1R5G-4-PV | 80*185*140.5                     | 252*138*215                                         | 1.2                   | 1.4                     |
| GD100-2R2G-4-PV | 80*185*140.5                     | 252*138*215                                         | 1.2                   | 1.4                     |
| GD100-004G-4-PV | 146*256*167                      | 353*238*280                                         | 3                     | 3.6                     |
| GD100-5R5G-4-PV | 146*256*167                      | 353*238*280                                         | 3                     | 3.6                     |
| GD100-7R5G-4-PV | 170*320*196.3                    | 428*270*325                                         | 6                     | 7                       |
| GD100-011G-4-PV | 170*320*196.3                    | 428*270*325                                         | 6                     | 7                       |
| GD100-015G-4-PV | 170*320*196.3                    | 428*270*325                                         | 6                     | 7                       |
| GD100-018G-4-PV | 200*340.6*184.3                  | 486*317*311                                         | 8.5                   | 10                      |
| GD100-022G-4-PV | 200*340.6*184.3                  | 486*317*311                                         | 8.5                   | 10                      |
| GD100-030G-4-PV | 250*400*202                      | 575*395*355                                         | 15                    | 17                      |
| GD100-037G-4-PV | 250*400*202                      | 575*395*355                                         | 15                    | 17                      |
| GD100-045G-4-PV | 282*560*238                      | 695*440*405                                         | 25                    | 29                      |
| GD100-055G-4-PV | 282*560*238                      | 695*440*405                                         | 25                    | 29                      |
| GD100-075G-4-PV | 282*560*238                      | 695*440*405                                         | 25                    | 29                      |
| GD100-090G-4-PV | 338*554*326.2                    | 674*469*572                                         | 41                    | 47                      |
| GD100-110G-4-PV | 338*554*326.2                    | 674*469*572                                         | 41                    | 47                      |
| GD100-132G-4-PV | 500*870*360                      | 974*634*565                                         | 74                    | 99                      |
| GD100-160G-4-PV | 500*870*360                      | 974*634*565                                         | 74                    | 99                      |
| GD100-185G-4-PV | 500*870*360                      | 974*634*565                                         | 74                    | 99                      |
| GD100-200G-4-PV | 500*870*360                      | 974*634*565                                         | 74                    | 99                      |
| GD100-220G-4-PV | 750*1410*380                     | 1089*829*595                                        | 114                   | 144                     |
| GD100-250G-4-PV | 750*1410*380                     | 1089*829*595                                        | 114                   | 144                     |
| GD100-280G-4-PV | 750*1410*380                     | 1089*829*595                                        | 114                   | 144                     |
| GD100-315G-4-PV | 750*1410*380                     | 1089*829*595                                        | 114                   | 144                     |
| GD100-355G-4-PV | 620*1700*560                     | 1089*829*595                                        | 338                   | 395                     |
| GD100-400G-4-PV | 620*1700*560                     | 1089*829*595                                        | 338                   | 395                     |
| GD100-450G-4-PV | 620*1700*560                     | 1089*829*595                                        | 338                   | 395                     |
| GD100-500G-4-PV | 620*1700*560                     | 1089*829*595                                        | 338                   | 395                     |

# 3 Installation guidelines

The chapter describes the mechanical installation and electric installation.

 Only qualified electricians are allowed to carry out what described in this chapter. Please operate as the instructions in 1 Safety precautions.
 Ignoring these may cause physical injury or death or damage to the devices.



- Ensure the power supply of the inverter is disconnected during the operation. Wait for at least the time designated after the disconnection if the power supply is applied.
- The installation and design of the inverter should be complied with the
  requirement of the local laws and regulations in the installation site. If the
  installation infringes the requirement, our company will exempt from any
  responsibility. Additionally, if users do not comply with the suggestion,
  some damage beyond the assured maintenance range may occur.

#### 3.1 Mechanical installation

#### 3.1.1 Installation environment

The installation environment is the safeguard for a full performance and long-term stable functions of the inverter. Check the installation environment as follows:

| Environment            | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Installation site      | Indoors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ambient<br>temperature | <ul> <li>-10°C-+50°C, and air temperature change shall be less than 0.5°C/minute.</li> <li>When the ambient temperature exceeds 40°C, derate 1% for every increase of 1°C.</li> <li>Do not use the inverter when the ambient temperature exceeds 50°C.</li> <li>To improve reliability, do not use the inverter in the places where the temperature changes rapidly.</li> <li>When the inverter is used in a closed space such as control cabinet, use a cooling fan or air conditioner for cooling, preventing the internal temperature from exceeding the temperature required.</li> <li>When the temperature is too low, if you want to use the inverter that has been idled for a long time, it is required to install an external heating device before the use to eliminate the freeze inside the inverter. Otherwise, the inverter may be damaged.</li> </ul> |

| Environment                                                                                                                                            | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Humidity                                                                                                                                               | <ul> <li>The relative humidity (RH) of the air is less than 90%.</li> <li>Condensation is not allowed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Storage temperature                                                                                                                                    | -40°C-+70°C, with the air temperature change rate less than 1°C/minute.                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Running<br>environment                                                                                                                                 | Install the inverter in a place:  Away from electromagnetic radiation sources.  Away from oil mist, corrosive gases and combustible gases.  Without the chance for foreign objects such as metal powder, dust, oil and water to fall into the inverter (do not install the inverter onto combustible objects such as wood).  Without radioactive substances and combustible objects.  Without hazard gases and liquids.  With low salt content.  Without direct sunlight. |  |  |  |  |  |  |  |
| Pollution degree                                                                                                                                       | Degree 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Lower than 1000m;     When the altitude exceeds 1000m, derate 1% for ever of 1°C.     When the altitude exceeds 3000m, consult the local IN or office. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| Vibration                                                                                                                                              | Max. vibration acceleration: 5.8m/s²(0.6g)                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Installation direction                                                                                                                                 | Install the inverter vertically to ensure good heat dissipation performance.                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |

#### Note:

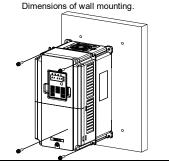
- The inverter must be installed in a clean and well-ventilated environment based on the IP level
- The cooling air must be clean enough and free from corrosive gases and conductive dust.

#### 3.1.2 Installation direction

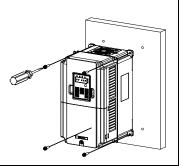
The inverter may be installed on the wall or in a cabinet.

The inverter needs be installed in the vertical position. Check the installation site according to the requirements below. See *Appendix D Dimension drawings* for frame details.

#### 3.1.3 Installation method


The installation method of the VFD varies with the outline dimensions. Based on the specific model and application environment, select the appropriate installation method according to the following table. ( $\checkmark$  means you can choose this installation method.)

|            |                  | Installatio      | on method          |                   |
|------------|------------------|------------------|--------------------|-------------------|
| Power (kW) | Wall<br>mounting | Rail<br>mounting | Flange<br>mounting | Floor<br>mounting |
| 0.4-0.75kW | ✓                | <b>√</b>         | -                  | -                 |
| 1.5-2.2kW  | ✓                | ✓                | ✓                  | -                 |
| 2.2-4kW    | ✓                | -                | ✓                  | -                 |
| 4-75kW     | ✓                | -                | ✓                  | -                 |
| 90-110kW   | ✓                | -                | ✓                  | -                 |
| 132–200kW  | ✓                | -                | √                  | -                 |
| 220-315kW  | ✓                | -                | -                  | ✓                 |
| 355–500kW  | -                | -                | -                  | ✓                 |


## 3.1.3.1 Wall mounting

# The mounting procedures are as follows:

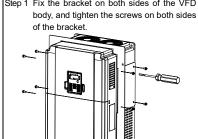
Step 1 Mark the installation hole positions. Step 2 Fix the VFD on the wall or mounting Mount the screws or bolts onto the designated positions. For details about the installation hole positions, see D.2

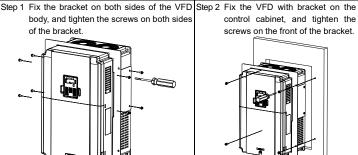


plate, and tighten the screws on the wall or mounting plate.



## 3.1.3.2 Rail mounting

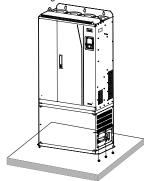

The mounting procedures are as follows:


Step 1 Fix the guide rail bracket to the wall or inside the cabinet with screws.

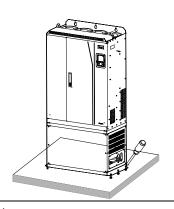
Step 2 Align the upper end of the VFD's guide rail clip with the upper end of the guide rail bracket. After securing the upper connection firmly, fit the lower end of the frequency converter's guide rail clip with the lower end of the guide rail bracket to complete the assembly (guide rail width W=35mm).

## 3.1.3.3 Flange mounting

The mounting procedures are as follows:



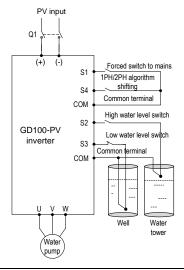




## 3.1.3.4 Floor mounting

The mounting procedures are as follows:

Mount the screws or bolts onto the designated positions. For details about the installation hole positions, see D.5 Dimensions of floor mounting.




Step 1 Mark the installation hole positions. Step 2 Fix the VFD on the ground or mounting plate, and tighten the screws on the ground or mounting plate.



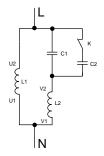
## 3.2 Standard wiring

#### 3.2.1 Main circuit terminals

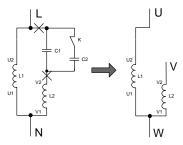
The figure below shows the standard wiring of inverter.



- The DC breaker Q1 must be installed as the protection switch for PV input.
- In parallel connection, the combination box special for PV must be used.
- When the distance between the PV input component and inverter exceeds 10 meters, Type-II surge protection devices must be configured at the DC side.




- When the distance between the pump and inverter exceeds 50 meters, it is recommended to configure output reactors. See A.4 Harmonic filter for the output reactor model selection.
- The inverter automatically runs after being powered on. If parameters need to be set, follow the parameter setting instructions in 5 Commissioning guidelines.


| Terminal          | Name                | Function                                                                                                               |
|-------------------|---------------------|------------------------------------------------------------------------------------------------------------------------|
| R, S, T<br>(L, N) | AC input            | 3PH (1PH) AC input terminals, connected to the grid <b>Note:</b> Use the screws equipped with the inverter for wiring. |
| (+), (-)          | PV input            | Solar cell panel input terminals                                                                                       |
| U, V, W           | Inverter<br>output  | 3PH/1PH AC output terminals, connected to the pump motor  Note: 1PH motors must connect to terminals U and W.          |
| <b>(±</b> )       | Safety<br>grounding | Safety protection grounding terminal. Each inverter must be grounded                                                   |

## Description for -SS2 single-phase output models

- 1) Generally, the output terminals U and W of the inverter connect to the phase cables of the single-phase motor.
- 2) If the single-phase pump cannot be started, the two-phase control method must be used, and the start-up and running capacitors (if any) of the motor must be removed. The figure below shows the internal wiring of the common single-phase motor. In the figure, L1, L2, C1, and C2 indicate the running winding, start-up winding, running capacitor, and start-up capacitor. When the motor speed exceeds 75% of the rated speed, the start-up capacitor is switched off.



Internal wiring of the single-phase motor winding after removing the starting and running capacitor:



U1 and V1 are the common terminals of the windings. Connect them to the output terminal W of the solar pump inverter. Connect U2 to the output terminal U of the inverter. Connect V2 to the output terminal V of the inverter. (**Note:** Use the screws equipped with the inverter.) Connect S4 of the inverter to COM in short circuited manner.

#### 3.2.2 Control circuit terminals

| S | 1  | s  | 2 | s | 3  | S  | 4  | CC | DM | 422 | RX+ | 422 | RX- |     |
|---|----|----|---|---|----|----|----|----|----|-----|-----|-----|-----|-----|
|   | +2 | 4V | Р | W | CC | DM | 48 | 5+ | 48 | 35- | 422 | TX+ | 422 | TX- |

| RO1A | RO1B | RO1C |
|------|------|------|
|      |      |      |

Figure 3-1 Control circuit terminal diagram for 2.2kW and lower inverters

| Category      | Terminal symbol | Terminal name                    | Terminal function                                                                                                                |  |  |  |  |
|---------------|-----------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|               | 24V             | 24V power supply                 | It provides the power of 24V±10% and maximum current of 200mA.                                                                   |  |  |  |  |
| Power supply  | СОМ             | Common terminal                  | It functions as the working power<br>supply of digital input and output or<br>externally connects to the sensor<br>power supply. |  |  |  |  |
| Dinital innut | S1              | Forced switch to power frequency | Terminal feature parameters:  1. Internal impedance: 3.3kΩ  2. Acceptable voltage input: 12–24V                                  |  |  |  |  |
| Digital input | S2              | Full-water alarm                 | Maximum input frequency: 1kHz     S1: Forcible switch to pow     frequency (Switching-on indicate                                |  |  |  |  |

| Category      | Category Terminal symbol Terminal name |                                     | Terminal function                                                                                                                                                                                                                                                                               |
|---------------|----------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | S3                                     | Empty-water alarm                   | switching to power frequency, and switching-off indicates input controlled by the keypad.)                                                                                                                                                                                                      |
|               | S4 Salų                                |                                     | S2: It connects to the high-water switch of the normally open contact by default. S3: It connects to the low-water switch of the normally closed contact. S4: A high electrical level corresponds to the single-phase algorithm. A low electrical level corresponds to the two-phase algorithm. |
|               | RS485+<br>RS485-                       | 485 communication                   | 485 communication terminals, using the Modbus protocol                                                                                                                                                                                                                                          |
| Communication | 422TX+<br>422TX-<br>422RX+<br>422RX-   | 422 communication                   | Communication terminals special for the boost module.                                                                                                                                                                                                                                           |
|               | RO1A                                   | Normally open                       | 1. Contact capacity: 3A/AC250V,                                                                                                                                                                                                                                                                 |
| Relay output  | (ROA)<br>RO1B                          | contact of relay 1  Normally closed | 1A/DC30V  2. They cannot be used for high                                                                                                                                                                                                                                                       |
|               | (ROB)                                  | contact of relay 1                  | frequency switch output.                                                                                                                                                                                                                                                                        |
|               | RO1C<br>(ROC)                          | Common terminal of relay 1          | During the application of auto power frequency & PV switching, the AC input contactor coil is controlled by the normally closed contact of the relay.                                                                                                                                           |

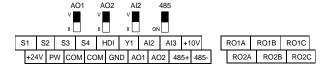



Figure 3-2 Control circuit terminal diagram for 4kW and higher inverters

**Note:** The rectangular black mark indicates the shorting cap or DIP switch ex-factory selection position.

| Туре                    | Terminal name | Function description                      | Technical specifications                                                                                                                                         |  |  |  |  |
|-------------------------|---------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Communication           | 485+          | 485 communication                         | 485 communication interface                                                                                                                                      |  |  |  |  |
| Communication           | 485-          | 400 communication                         | 403 COMMUNICATION INTERNACE                                                                                                                                      |  |  |  |  |
|                         | S1            |                                           | 1. Internal impedance: 3.3kΩ                                                                                                                                     |  |  |  |  |
|                         | S2            |                                           | 2. 12–30V voltage input is available                                                                                                                             |  |  |  |  |
|                         | S3            | Digital input                             | 3. The terminal is the dual-direction input                                                                                                                      |  |  |  |  |
|                         | S4            |                                           | terminal 4. Max. input frequency: 1kHz                                                                                                                           |  |  |  |  |
| Digital<br>input/output | HDI           | High frequency input channel              | Except for S1–S4, this terminal can be used as high frequency input channel.     Max input frequency: 50kHz     Duty cycle: 30%–70%                              |  |  |  |  |
|                         | PW            | Digital power supply                      | External power input terminal for digital input circuits Voltage range: 12–30V                                                                                   |  |  |  |  |
|                         | Y1            | Digital output                            | Switch capacity: 50 mA/30V;     Range of output frequency: 0–1kHz.                                                                                               |  |  |  |  |
|                         | COM           | Digital output                            | Common terminal of open collector output                                                                                                                         |  |  |  |  |
| 24V power supply        | +24V          |                                           | External 24V±10% power supply and the                                                                                                                            |  |  |  |  |
|                         | СОМ           | 24V power supply                          | maximum output current is 200mA. Generally used as the operation power supply of digital input and output or external sensor power supply.                       |  |  |  |  |
|                         | +10V          | External 10V<br>reference power<br>supply | 10V reference power supply; Max. output current: 50 mA; As the adjusting power supply of the external potentiometer; Potentiometer resistance: $5k\Omega$ above. |  |  |  |  |
| Analog<br>input/output  | Al2           | Analog input                              | Input range: Al2 voltage and current can be chosen: 0–10V/0–20mA; Al3: -10V–+10V.     Input impedance: voltage input: 20kΩ; current input: 500Ω.                 |  |  |  |  |
|                         | Al3           |                                           | 3. Voltage or current input can be set by dip switch.  4. Resolution: the minimum Al2/Al3 is                                                                     |  |  |  |  |

| Туре         | Terminal name | Function description    | Technical specifications                                                                         |  |  |
|--------------|---------------|-------------------------|--------------------------------------------------------------------------------------------------|--|--|
|              |               |                         | 10mV/20mV when 10V corresponds to 50Hz.                                                          |  |  |
|              | GND           | Analog reference ground | Analog reference ground                                                                          |  |  |
| Relay output | AO1           | Analog output           | <ol> <li>Output range: 0–10V or 0–20mA.</li> <li>The voltage or the current output is</li> </ol> |  |  |
|              | AO2           | Analog output           | depended on the dip switch.  3. Deviation±1%, 25°C when full range.                              |  |  |
|              | RO1A          | Relay 1 NO contact      | Relay output RO1                                                                                 |  |  |
|              | RO1B          | Relay 1 NC contact      | RO1A is in the NO state, RO1B is in the                                                          |  |  |
|              | RO1C          | Relay 1 common contact  | NC state, and RO1C is the commoterminal.                                                         |  |  |
|              | RO2A          | Relay 2 NO contact      | Relay output RO2                                                                                 |  |  |
|              | RO2B          | Relay 2 NC contact      | RO2A is in the NO state, RO2B is in the                                                          |  |  |
|              | RO2C          | Relay 2 common contact  | NC state, and RO2C is the common terminal. Contact capacity: 3A/AC250V, 1A/DC30V                 |  |  |

# 3.2.3 Input/output signal connection figure

You can select the NPN/PNP mode and internal/external power through the U-shaped jumper. NPN internal mode is adopted by default.

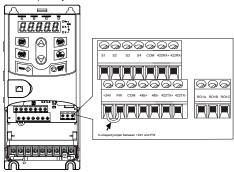



Figure 3-3 U-shaped jumper for 2.2kW and lower inverters

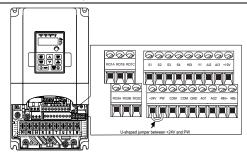



Figure 3-4 U-shaped jumper for 4kW and higher inverters

If input signal comes from NPN transistors, set the U-shaped jumper based on the power used according to the following figure.

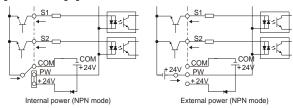



Figure 3-5 NPN mode

If input signal comes from PNP transistors, set the U-shaped jumper based on the power used according to the following figure.

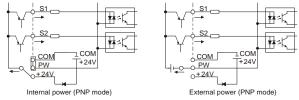



Figure 3-6 PNP mode

# 4 Keypad operation guidelines

# 4.1 Keypad introduction

The keypad is used to control the inverter, read inverter status, and set parameters. If you need to install the keypad on another position rather than on the inverter, use a keypad extension cable with a standard RJ45 crystal head.



Figure 4–1 Keypad diagram for inverters of ≤ 2.2kW



Figure 4-2 Keypad diagram for inverters of ≥ 4kW

**Note:** The inverter models of  $\leq$  2.2kW support an optional external keypad, and the keypad of inverter models of  $\geq$  4kW can be installed on another device.

| No | Item             |          | Description                                                      |
|----|------------------|----------|------------------------------------------------------------------|
| 1  | Status indicator | RUN/TUNE | Inverter running status indicator. Off: The inverter is stopped. |

| On: The inverter is running.  FWD/REV  Off: The inverter is running forward. On: The inverter is running reversely.  Indicates whether the inverter is controlled through the keypad, terminals, or communication. Off: The inverter is controlled through the keypad, terminals, or communication. Off: The inverter is controlled through the keypad linking: The inverter is controlled through recommunication.  Fault indicator Off: in normal state Blinking: in pre-alarm state On: in fault state  Mean the unit displayed currently  Hz Frequency unit RPM Rotating speed unit RPM Rotating speed unit A Current unit Percentage V Voltage unit  Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Digital Joint Led Splays various monitoring data and alarm codes such a frequency setting and output frequency.  Digital Joint Led Splays various monitoring data and bisplay Means Joint Led Splay Means Display Means Display Means Joint Led Splay Means Display Means Display Means Joint Led Splay Means Display Means Disp | No. | Item      | Description   |                           |      |          |                                                  |            |         |            |          |              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|---------------|---------------------------|------|----------|--------------------------------------------------|------------|---------|------------|----------|--------------|--|
| FWD/REV  Forward or reverse running indicator. Off: The inverter is running forward. On: The inverter is running reversely.  Indicates whether the inverter is controlled through the keypad, terminals, or communication. Off: The inverter is controlled through the keypad, terminals, or communication. Off: The inverter is controlled through the keypad linking: The inverter is controlled through recommunication.  Fault indicator Off: in normal state Blinking: in pre-alarm state On: in fault state  Mean the unit displayed currently  Hz Frequency unit RPM Rotating speed u A Current unit RPM Rotating speed u A Current unit Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Digital Joint A S Jo |     |           |               |                           |      |          | Blinking: The inverter is autotuning parameters. |            |         |            |          |              |  |
| FWD/REV  Off: The inverter is running forward. On: The inverter is running reversely.  Indicates whether the inverter is controlled through the keypad, terminals, or communication. Off: The inverter is controlled through the keypad, terminals, or communication. Off: The inverter is controlled through release to communication. On: The inverter is controlled through release to communication. Fault indicator Off: in normal state Blinking: in pre-alarm state On: in fault state  Mean the unit displayed currently  Hz Frequency unit RPM Rotating speed u A Current unit RPM Rotating speed u A Current unit Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Digital  Digital Joint LED displays various monitoring data and alarm Display Mean Display Means D |     |           |               |                           |      |          |                                                  |            |         |            |          |              |  |
| On: The inverter is running reversely.  Indicates whether the inverter is controlled through the keypad, terminals, or communication.  Off: The inverter is controlled through the keypad, terminals, or communication.  Off: The inverter is controlled through the keypad, terminals.  On: The inverter is controlled through recommunication.  Fault indicator  Off: in normal state  Blinking: in pre-alarm state  On: in fault state  Mean the unit displayed currently  Hz Frequency unit  RPM Rotating speed u  A Current unit  Year Percentage  Voltage unit  Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Digital display Jone  Digital display Jone  C C d D E E F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |           |               |                           |      |          |                                                  |            | _       |            |          |              |  |
| Indicates whether the inverter is controlled through the keypad, terminals, or communication.  Off: The inverter is controlled through the keypad blinking: The inverter is controlled through the terminals.  On: The inverter is controlled through recommunication.  Fault indicator  Off: in normal state Blinking: in pre-alarm state On: in fault state  Mean the unit displayed currently  Hz Frequency unit RPM Rotating speed u A Current unit 9% Percentage V Voltage unit  Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Digital display Jone  Digital S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | FW            | /D/REV                    |      |          |                                                  |            | _       |            |          |              |  |
| the keypad, terminals, or communication. Off: The inverter is controlled through the keyp Blinking: The inverter is controlled through reterminals. On: In pre-alarm state Blinking: in pre-alarm state On: in fault state    Mean the unit displayed currently                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |           |               |                           |      |          |                                                  |            |         |            |          | d di secondo |  |
| Off: The inverter is controlled through the keyp Blinking: The inverter is controlled through reterminals.  On: The inverter is controlled through reterminals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |           |               |                           |      |          |                                                  |            |         |            |          | U            |  |
| Blinking: The inverter is controlled through reference terminals.  On: The inverter is controlled through reference communication.  Fault indicator  Off: in normal state Blinking: in pre-alarm state On: in fault state  Mean the unit displayed currently  Hz Frequency unit RPM Rotating speed unit RPM Rotating speed unit % Percentage Voltage unit  Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Digital Joigital Joig |     |           |               |                           |      |          |                                                  |            |         |            |          |              |  |
| terminals. On: The inverter is controlled through recommunication.  Fault indicator Off: in normal state Blinking: in pre-alarm state On: in fault state  Mean the unit displayed currently  Hz Frequency unit RPM Rotating speed u A Current unit Yercentage Voltage unit  Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Display Means  |     |           | LOCA          | L/REMO                    |      |          |                                                  |            |         |            | •        | ,,           |  |
| communication. Fault indicator Off: in normal state Blinking: in pre-alarm state On: in fault state  Mean the unit displayed currently  Hz Frequency unit RPM Rotating speed u A Current unit % Percentage V Voltage unit  Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Digital display zone  Digital 8 8 9 9 R A B B C C d D E E F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |           | 200/          |                           | _    |          | •                                                |            |         |            |          | unoug.       |  |
| Fault indicator Off: in normal state Blinking: in pre-alarm state On: in fault state  Mean the unit displayed currently  Hz Frequency unit RPM Rotating speed u A Current unit % Percentage V Voltage unit  Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Digital display cone  Digital display zone  Fault indicator Off: in normal state Blinking: in pre-alarm state On: in fault state  Hz Frequency unit RPM Rotating speed u A Current unit % Percentage V Voltage unit  Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Display Means Display Means Display Means Display Means  Display Means Display Means Display Means Display Means  C O I D E E F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |           |               |                           |      | On:      | The inv                                          | verter is  | contr   | olle       | d throug | h remote     |  |
| Off: in normal state Blinking: in pre-alarm state On: in fault state  Mean the unit displayed currently  Hz Frequency unit RPM Rotating speed u A Current unit 96 Percentage V Voltage unit  Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Digital display Jone  Digital Joint A S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |           |               |                           | 0    | com      | nmunicati                                        | on.        |         |            |          |              |  |
| Pigital  Joigital  Joigita |     |           |               |                           |      | Fau      | It indicate                                      | or         |         |            |          |              |  |
| Blinking: in pre-alarm state On: in fault state  Mean the unit displayed currently  Hz Frequency unit  RPM Rotating speed u  A Current unit  96 Percentage V Voltage unit  Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.  Display Means Display Means Display Means Display Means  Digital  Joigital Joigi |     |           | l F           | TRIP                      | (    | Off:     | in norma                                         | l state    |         |            |          |              |  |
| Mean the unit displayed currently    Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |           |               | IKIP                      |      |          |                                                  |            | state   |            |          |              |  |
| Percentage   Percentage   Percentage   Percentage   Voltage unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |           |               |                           |      |          |                                                  |            |         |            |          |              |  |
| Percentage V Voltage unit  Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.    Digital display zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |           | Mean the      | Mean the unit displayed   |      |          |                                                  |            |         |            |          |              |  |
| A Current unit  ## Percentage    V Voltage unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 0         | <u> </u>      |                           |      |          |                                                  |            | _       | · · ·      |          |              |  |
| Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.    Digital display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2   |           |               |                           |      |          |                                                  |            | _       | * '        |          |              |  |
| Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.    Display   Means   Displa |     | indicator |               |                           |      |          |                                                  |            | _       |            |          |              |  |
| Five-digit LED displays various monitoring data and alarm codes such a frequency setting and output frequency.    Display   Means   Display   Display   Display   Display   Display   Display   Display   Display  |     |           |               |                           |      |          |                                                  |            |         |            |          | •            |  |
| frequency setting and output frequency.    Display   Means   Display   Display |     |           | Cive digit    | Eive_digit LED dieplaye v |      |          |                                                  |            |         |            |          |              |  |
| Display   Means   Display   Di   |     |           |               |                           |      |          |                                                  |            |         | uch as the |          |              |  |
| Digital display zone     0     1     1     2     2     3     3       C     0     1     1     2     2     3     3       3     4     4     5     5     5     6     7     7       8     8     9     9     R     A     b     B       C     C     d     D     E     E     F     F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |           |               |                           |      |          |                                                  |            | Mea     | ns         | Display  | Means        |  |
| 3     Digital display zone     4     4     5     5     5     6     7     7       4     8     8     9     9     R     A     b     B       5     C     d     D     E     E     F     F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |           |               |                           |      | <u>,</u> |                                                  |            |         |            |          |              |  |
| 3 display zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 5         |               | 4                         | _    |          | 5                                                |            | 6       |            |          | 7            |  |
| zone C d D E E F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3   | Ü         | l <del></del> | 8                         |      |          |                                                  |            | A       |            | h        | В            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           | I — —         | С                         |      |          | D                                                | Ε          | Е       |            |          | F            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           | H             | Н                         | 1    |          | ı                                                | L          | L       |            | 8        | N            |  |
| n n o P P c r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |           | n             | n                         | 0    |          | 0                                                | Р          | Р       |            | -        | r            |  |
| 5 S <b>L</b> t 11 U <b>u</b> v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |           | 5             | S                         | Ł    |          | t                                                | Ц          | U       |            | U        | V            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           |               |                           |      |          |                                                  |            |         |            |          |              |  |
| PRG Programming Press it to enter or exit level-1 menus or dele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           | PPG           | Programi                  | mina | Pre      | ss it to e                                       | nter or ex | it leve | el-1       | menus o  | r delete a   |  |
| 4 Keys key parameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4   | Keys      | ESC           | •                         | -    |          |                                                  |            | 10 V    | -1         |          | . 401010 6   |  |

| No. | Item                                 | Description  |                                                                                                                    |                                                                                                                                                                                |  |  |  |  |  |
|-----|--------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     |                                      | DATA<br>ENT  | Confirmation key                                                                                                   | Press it to enter menus in cascading mode or confirm the setting of a parameter.                                                                                               |  |  |  |  |  |
|     |                                      |              | UP key                                                                                                             | Press it to increase data or move upward.                                                                                                                                      |  |  |  |  |  |
|     |                                      | <b>\</b>     | DOWN key Press it to decrease data or move downwar                                                                 |                                                                                                                                                                                |  |  |  |  |  |
|     |                                      | SHIFT        | Right-shifting key                                                                                                 | Press it to select display parameters rightward in<br>the interface for the inverter in stopped or running<br>state or to select digits to change during parameter<br>setting. |  |  |  |  |  |
|     |                                      | RUN 💠        | Run key                                                                                                            | Press it to run the inverter when using the keypad for control.                                                                                                                |  |  |  |  |  |
|     |                                      | STOP     RST | Stop/<br>Reset key                                                                                                 | Press it to stop the inverter that is running. The function of this key is restricted by P07.04. In fault alarm state, this key can be used for reset in any control modes.    |  |  |  |  |  |
|     | QUICK JOG Multifunction shortcut key |              |                                                                                                                    | The function of this key is determined by P07.02.                                                                                                                              |  |  |  |  |  |
| 5   | Keypad interface                     |              | External keypad interface. When the keypad is valid, the local keypad and external keypad light up simultaneously. |                                                                                                                                                                                |  |  |  |  |  |

# 4.2 Keypad display

The inverter keypad displays information such as the stopped-state parameters, running-state parameters, and fault status, and allows you to modify function codes.

# 4.2.1 Displaying stopped-state parameters

When the inverter is in stopped state, the keypad displays stopped-state parameters, as shown in Figure 4-3.

When the inverter is in stopped state, the keypad displays 4 stopped-state parameters, including set frequency, bus voltage, input terminal status, and output terminal status. You can press >>/SHIFT to shift parameters.

# 4.2.2 Displaying running-state parameters

After receiving a valid running command, the inverter enters the running state, and the keypad displays running-state parameters, with the RUN/TUNE indicator on. The on/off state of the FWD/REV indicator is determined by the actual running direction, as shown in Figure 4-3.

In the running state, there are 6 parameters that can be displayed. There are: running frequency, set frequency, bus voltage, output voltage, output current, and rotational speed. You can press the >>/SHIFT key to shift parameters.

#### 4.2.3 Displaying fault information

After detecting a fault signal, the inverter enters the fault alarm state immediately, the fault code blinks on the keypad, and the TRIP indicator is on. You can perform fault reset by using the STOP/RST key, control terminals, or communication commands.

If the fault persists, the fault code is continuously displayed.

#### 4.2.4 Editing function codes

You can press the PRG/ESC key to enter the editing mode in stopped, running, or fault alarm state (if a user password is used, see the description of P07.00). The editing mode contains two levels of menus in the following sequence: Function code group or function code number → Function code setting. You can press the DATA/ENT key to enter the function parameter display interface. In the function parameter display interface, you can press the DATA/ENT key to save parameter settings or press the PRG/ESC key to exit the parameter display interface.



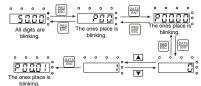
Figure 4-3 Status display

# 4.3 Operation procedure

You can operate the inverter by using the keypad. For details about function code descriptions, see the function code list.

## 4.3.1 Modifying function codes

The inverter provides three levels of menus, including:


- Function code group number (level-1 menu)
- Function code number (level-2 menu)
- Function code setting (level-3 menu)

Note: When performing operations on the level-3 menu, you can press the PRG/ESC or DATA/ENT key to return to the level-2 menu. If you press the DATA/ENT key, the set value of the parameter is saved to the control board first, and then the level-2 menu is returned, displaying the next function code. If you press the PRG/ESC key, the level-2 menu is returned directly, without saving the set value of the parameter, and the current function code is displayed.

If you enter the level-3 menu but the parameter does not have a digit blinking, the parameter cannot be modified due to either of the following reasons:

- It is read only. Read-only parameters include actual detection parameters and running record parameters.
- It cannot be modified in running state and can be modified only in stopped state.

Example: Change the value of P00.01 from 0 to 1.



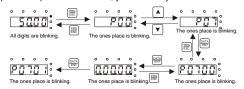
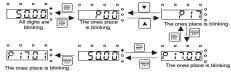

Note: When setting the value, you can press and A+V to modify the value.

Figure 4-4 Modifying a parameter

#### 4.3.2 Setting a password for the inverter

The inverter provides password protection function to users. Set P07.00 to gain the password and the password protection becomes effective 1 minute later after retreating from the function code editing state. Press <a href="PRG/ESC">PRG/ESC</a> again to the function code editing state, "0.0.0.0.0" will be displayed. Unless using the correct password, you cannot enter it.

To disable the password protection function, you need only to set P07.00 to 0.




Note: When setting the value, you can press and ▲ +▼ to modify the value.

Figure 4-5 Setting a password

#### 4.3.3 Viewing inverter status

The inverter provides group P17 for status viewing. You can enter group P17 for viewing.



Note: When setting the value, you can press and A+ vo modify the value.

Figure 4-6 Viewing a parameter

## 4.3.4 Locking the keypad

The inverter provides a keypad lock function. When the PRG/ESC key and DATA/ENT key are

pressed simultaneously, the LED keypad lock indicator illuminates, rendering the keypad inoperable. To unlock, power must be cycled off and then back on.

# 5 Commissioning guidelines



- Cut off all power supplies connected to the inverter before terminal wiring, and wait for at least the time designated on the inverter after disconnecting the power supplies.
- High voltage presents inside the inverter during running. Do not carry out any operation on the inverter during running except for keypad setup.
- By default, the inverter runs automatically after being powered on. If you need to set parameters, comply with the procedure described in this chapter.

# 5.1 Check before running

Ensure the following before powering on the inverter:

- 1. The inverter has been grounded reliably.
- 2. The wire connection is correct and reliable.
- The AC/DC breaker is selected correctly.
- 4. The solar DC input voltage is within the range allowed by the inverter.
- 5. The motor type, voltage, and power match the inverter type, voltage, and power.

### 5.2 Trial run

Close the DC circuit breaker, and the inverter runs automatically after a delay of about 10s. Observe the water output of the pump. If the water output is normal, the trial run is successful; if the water output is small, run again after swapping the connection of any two motor wires.

# 5.3 Parameter settings

By default, the inverter runs automatically after being powered on. To set parameters, do as follows: If the inverter has not been powered on, power on the inverter, and press QUICK/JOG within 10s to enter the keypad-based control mode (LOCAL/REMOT) off). If the inverter has been powered on (Run indicator is on), press the STOP/RST key to enter the parameter setting interface. After the parameters are set, turn off and turn on the inverter power.

# 5.4 Advanced settings

**Note:** The default settings of the inverter can be adapted to most working conditions, and advanced settings are not required in most cases.

# 5.4.1 Water discharge speed PI adjustment

If you have higher requirements on the water discharge speed, you can adjust the PI parameters (P15.06–P15.10) appropriately. Setting the PI parameters to larger values will result in a faster water discharge speed, but the motor frequency fluctuates greatly; conversely, setting the PI parameters to smaller values will result in a slower water discharge speed, but the motor running frequency is relatively smooth.

#### 5.4.2 Special settings for single phase motors

- a) When the single phase motor is in poor running performance, you can adjust P04 group VF curve settings. Set <u>P04.00</u>=1 and set <u>P04.03</u>-<u>P04.08</u> to appropriate values according to commissioning conditions. Increase the voltage if the motor cannot start and decrease the voltage if the current is large.
- b) When the light is normal and the system starts slowly, increase initial voltage differential value of P15.28 appropriately.
- c) For single phase motors with two-phase control (capacitor-removing):
- ① The max. voltage needs to be less than 1/1.6 of the bus voltage. It is recommended to set the rated voltage (P02.04) less than 200V, or limit the max. voltage output by multi-dot V/F curve.
- ② Observe the currents of the windings through P17.38 and P17.39, the switched current is the combination current of the two windings. The impedances of the windings are different, so the currents are different at the same voltage output.
- ③ P04.35 can be used to change the output currents of the main and secondary windings. It is recommended that qualified engineers perform adjustment since the voltage adjustment is associated with motor design parameters. Otherwise, the motor performance may be impacted.

# 6 Function parameter list

"O" indicates that the value of the parameter can be modified when the inverter is in stopped or running state.

"©" indicates that the value of the parameter cannot be modified when the inverter is in running state.

"•" indicates that the value of the parameter is detected and recorded, and cannot be modified.

**Note:** The inverter automatically checks and constrains the modification of parameters, which helps prevent incorrect modifications.

# 6.1 Function parameters related to control

## P00 group Basic functions

| Function code | Name                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default | Modify |
|---------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P00.00        | Speed control<br>mode       | 1: SVC mode 1 Applicable to high-performance scenarios, featuring high rotation and torque accuracy, without the need to install pulse encoders.  2: Space voltage vector control mode Applicable to scenarios without demanding requirements on control accuracy, such as fan and pump. One inverter can drive multiple motors.  Note: Before using a vector control mode, enable the inverter to perform motor parameter autotuning first.   | 2       | 0      |
| P00.01        | Channel of running commands | Used to select the channel of running inverter control commands.  The inverter control commands include the start, stop, forward run, reverse run, jog, and fault reset commands.  0: Keypad (LOCAL/REMOT) off)  The commands are controlled through keypad keys, such as the RUN and STOP/RST keys. The running direction can be changed through setting the multifunction shortcut key QUICK/JOG to FWD/REV shifting function (P07.02=3). In | 1       | 0      |

| Function code | Name                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                   | Default | Modify |
|---------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                                        | running state, you can press both RUN and STOP/RST to enable the inverter to coast to stop.  1: Terminal (LOCAL/REMOT) blinking) The running commands are controlled through forward rotation, reverse rotation, forward jogging, and reverse jogging of multi-function input terminals.  2: Communication (LOCAL/REMOT) on) The running commands are controlled by the upper computer in communication mode. |         |        |
| P00.03        | Max. output<br>frequency               | Used to set the max. output frequency of the inverter. Pay attention to this parameter because it is the foundation of the frequency setting and the speed of acceleration (ACC) and deceleration (DEC).  Setting range: P00.04-400.00Hz                                                                                                                                                                      | 50.00Hz | 0      |
| P00.04        | Upper limit of<br>running<br>frequency | The upper limit of the running frequency is the upper limit of the output frequency of the inverter which is lower than or equal to the maximum frequency.  When the set frequency is higher than the upper limit of the running frequency, the upper limit of the running frequency is used for running.  Setting range: P00.05-P00.03 (Max. output frequency)                                               | 50.00Hz | 0      |
| P00.05        | Lower limit of<br>running<br>frequency | The lower limit of the running frequency is that of the output frequency of the inverter. The inverter runs at the lower limit frequency if the set frequency is lower than the lower limit.  Note: Max. output frequency ≥ Upper limit frequency ≥ Lower limit frequency Setting range: 0.00Hz—P00.04 (Upper limit of running frequency)                                                                     | 0.00Hz  | 0      |

| Function code | Name                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default           | Modify |
|---------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| P00.11        | ACC time 1           | ACC time means the time needed if the inverter speeds up from 0Hz to the Max. output frequency (P00.03). DEC time means the time needed if the inverter speeds down from the Max. output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Model<br>depended | 0      |
| P00.12        | DEC time 1           | lactory delault ACC/DEC tille of the most                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 0      |
| P00.13        | Running<br>direction | 0: Run at the default direction. The inverter runs in the forward direction.      WD/REV indicator is off.     Run at the opposite direction. The inverter runs in the reverse direction.     FWD/REV indicator is on.     Modify P00.13 to shift the rotation direction of the motor. This effect equals to the shifting the rotation direction by adjusting either two of the motor lines (U, V and W). The motor rotation direction can be changed by   QUICK/JOG   on the keypad.     Refer to parameter P07.02.     Note: When the parameter is restored to the default value, the motor's running direction is restored to the default one. Exercise caution before using this function if the change of motor rotation direction is disallowed after commissioning. Do not change the setting of the parameter because reverse running is not allowed in water pump application scenarios.     2: Disable reverse running. It can be used in some special scenarios where reverse running is disallowed. | 0                 | 0      |

| Function code | Name                             | Description                                                                                                                                                                                                                                                                                                                                     | Default | Modify |
|---------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P00.15        | Motor<br>parameter<br>autotuning | O: No operation 1: Rotation autotuning Comprehensive motor parameter autotuning. It is recommended to use rotation autotuning when high control accuracy is needed. 2: Static autotuning Used in scenarios where the motor cannot be disconnected from load. 3: Static autotuning 2 Empty-load current and mutual inductance are not autotuned. | 0       | ©      |
| P00.18        | Function<br>parameter<br>restore | O: No operation 1: Restore default values 2: Clear fault records  Note:  After the selected operation is performed, the function code is automatically restored to 0.  Restoring the default values may delete the user password. Exercise caution before using this function.                                                                  | 0       | ©      |

#### P01 group Start and stop control

| Function code | Name                   | Description                                                                                                                                                                                                                                                                                                                                                 | Default | Modify |
|---------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P01.08        | Stop mode              | 0: Decelerate to stop. When a stop command takes effect, the inverter lowers output frequency based on the DEC mode and the defined DEC time; when the frequency drops to 0Hz, the inverter stops.  1: Coast to stop. When a stop command takes effect, the inverter stops output immediately. And the load coasts to stop according to mechanical inertia. |         | 0      |
| P01.18        | Terminal-based running | 0: The terminal running command is invalid at power-on.                                                                                                                                                                                                                                                                                                     | 1       | 0      |

| Function code | Name                              | Description                                           | Default | Modify |
|---------------|-----------------------------------|-------------------------------------------------------|---------|--------|
|               | command protection at             | 1: The terminal running command is valid at power-on. |         |        |
|               | power-on                          |                                                       |         |        |
| P01.21        | Power-off<br>restart<br>selection | 0: Disable restart<br>1: Enable restart               | 1       | 0      |

## P02 group Parameters of motor 1

| Function code | Name                        |                                | Description                                                                                                                                    | Default           | Modify |
|---------------|-----------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| P02.00        | Motor type                  | 0: Asynchronous<br>1: Reserved | motor (AM)                                                                                                                                     | 0                 | 0      |
| P02.01        | Rated power of AM           | 0.1–3000.0kW                   | Used to set AM parameters. To ensure the control performance, set P02.01-                                                                      | Model<br>depended | 0      |
| P02.02        | Rated<br>frequency of<br>AM | 0.01Hz–P00.03                  | P02.05 correctly according to the information on the nameplate of the AM.  The inverter provides the                                           | 50.00<br>Hz       | 0      |
| P02.03        | Rated speed of<br>AM        | 1–36000rpm                     | parameter autotuning<br>function. Whether<br>parameter autotuning can<br>be performed properly<br>depends on the settings of                   | Model<br>depended | 0      |
| P02.04        | Rated voltage of AM         | 0–1200V                        | the motor nameplate<br>parameters.<br>In addition, you need to<br>configure a motor<br>according to the standard                               | Model<br>depended | 0      |
| P02.05        | Rated current<br>of AM      | 0.8–6000.0A                    | motor configuration of the inverter. If the power of the motor is greatly different from that of the standard motor configuration, the control | Model<br>depended | 0      |

| Tunotton paramotor in |                                |               |                                                                                                                                                           |                   |        |  |
|-----------------------|--------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|--|
| Function code         | Name                           | ľ             | Description                                                                                                                                               | Default           | Modify |  |
|                       |                                |               | performance of the inverter degrades significantly.  Note: Resetting the rated power (P02.01) of the motor can initialize the parameters P02.02 – P02.10. |                   |        |  |
| P02.06                | Stator<br>resistance of<br>AM  | 0.001–65.535Ω | After motor parameter autotuning is properly                                                                                                              | Model<br>depended | 0      |  |
| P02.07                | Rotor<br>resistance of<br>AM   | 0.001–65.535Ω | These parameters are the benchmark parameters for high-performance vector control, directly affecting the control performance.                            | Model<br>depended | 0      |  |
| P02.08                | Leakage<br>inductance of<br>AM | 0.1–6553.5mH  |                                                                                                                                                           | Model<br>depended | 0      |  |
| P02.09                | Mutual<br>inductance of<br>AM  | 0.1–6553.5mH  |                                                                                                                                                           | Model<br>depended | 0      |  |
| P02.10                | Non-load<br>current of AM      | 0.1–6553.5A   | necessary.                                                                                                                                                | Model<br>depended | 0      |  |

## P04 group Space voltage vector control

|               | F04 group Space voltage vector control |                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |  |  |  |  |
|---------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--|--|--|--|
| Function code | Name                                   | Description                                                                                                                                                                                                                                                                                                                                                                                              | Default | Modify |  |  |  |  |
| P04.00        | V/F curve<br>setting                   | This group of function code defines the V/F curve of motor 1 to meet the needs of different loads.  0: Straight-line V/F curve, applicable to constant torque loads  1: Multi-dots V/F curve  2: Torque-down V/F curve (power of 1.3)  3: Torque-down V/F curve (power of 1.7)  4: Torque-down V/F curve (power of 2.0)  Curves 2–4 are applicable to the torque loads such as fans and water pumps. You | 4       | ©      |  |  |  |  |

| Function code | Name                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Default | Modify |
|---------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                         | can adjust according to the characteristics of the loads to achieve best performance.  5: Customized V/F(V/F separation); in this mode, V can be separated from f and f can be adjusted through the frequency given channel set by P00.06 or the voltage given channel set by P04.27 to change the feature of the curve.  Note: In the following figure, Vb is the motor rated voltage and fb is the motor rated frequency.                                                                                                                                                                                                                                                                                            |         |        |
| P04.01        | Torque boost            | In order to compensate for low-frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0%    | 0      |
| P04.02        | Torque boost<br>cut-off | torque characteristics, you can make some boost compensation for the output voltage. P04.01 is relative to the max. output voltage V <sub>b</sub> . P04.02 defines the percentage of cut-off frequency of manual torque boost to the rated motor frequency f <sub>b</sub> . Torque boost can improve the low-frequency torque characteristics in space voltage vector control mode.  You need to select torque boost based on the load. For example, larger load requires larger torque boost, however, if the torque boost is too large, the motor will run at overexcitation, which may cause increased output current and motor overheating, thus decreasing the efficiency.  When torque boost is set to 0.0%, the | 20.0%   | 0      |

| Function code | Name                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default | Modify |
|---------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                                        | inverter uses automatic torque boost.  Torque boost cut-off threshold: Below this frequency threshold, torque boost is valid; exceeding this threshold will invalidate torque boost.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |
|               |                                        | Output voltage  Voltage  Output frequency  Former  Output  Out |         |        |
|               |                                        | Setting range of <u>P04.01</u> : 0.0%: (automatic) 0.1%–10.0%<br>Setting range of <u>P04.02</u> : 0.0%–50.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |
| P04.03        | V/F frequency<br>point 1 of motor<br>1 | If <u>P04.00</u> =1, the user can set V//F curve by <u>P04.03</u> - <u>P04.08</u> .  V/F is set to the motor load. <b>Note:</b> V1 <v2<v3; f1<f2<f3.="" high,="" if="" is="" low-frequency="" overtemperature<="" td="" the="" voltage=""><td>0.00Hz</td><td>0</td></v2<v3;>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00Hz  | 0      |
| P04.04        | V/F voltage<br>point 1 of motor<br>1   | and burning may occur and the overcurrent stall and protection may occur to the inverter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0%    | 0      |
| P04.05        | V/F frequency<br>point 2 of motor<br>1 | V2   Output   Frequency   (Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00Hz  | 0      |
| P04.06        | V/F voltage<br>point 2 of motor<br>1   | Setting range of P04.03: 0.00Hz–P04.05 Setting range of P04.04: 0.0%–110.0% (rated voltage of motor1) Setting range of P04.05: P04.03–P04.07 Setting range of P04.06: 0.0%–110.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%    | 0      |
| P04.07        | V/F frequency<br>point 3 of motor<br>1 | (rated voltage of motor1) Setting range of P04.07: P04.05-P02.02 (rated frequency of motor1) or P04.05-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00Hz  | 0      |

| Function | Name                                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default | Modify |
|----------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P04.08   | V/F voltage<br>point 3 of motor<br>1                          | P02.16 (rated frequency of motor1) Setting range of P04.08: 0.0%-110.0% (rated voltage of motor1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00.0%   | 0      |
| P04.09   | V/F slip<br>compensation<br>gain                              | Used to compensate for the motor rotating speed change caused by load change in the space voltage vector mode, and thus improve the rigidity of the mechanical characteristics of the motor. You need to calculate the rated slip frequency of the motor as follows: $\Delta \ f=f_0-n^*p/60$ Of which, $f_0$ is the rated frequency of the motor, corresponding to function code P02.01. n is the rated rotating speed of the motor, corresponding to function code P02.02.p is the number of pole pairs of the motor. $100.0\%$ corresponds to the rated slip frequency $\Delta f$ of the motor. Setting range: $0.0-200.0\%$ | 0.0%    | 0      |
| P04.34   | Two phase<br>control<br>selection of<br>single-phase<br>motor | Ones: Reserved Tens: Reversal of the secondary winding (V- phase) voltage 0: Not reversed; 1: Reversed Setting range: 0-0x11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x00    | 0      |
| P04.35   | Voltage ratio of<br>V-phase and<br>U-phase                    | 0.00–2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.40    | 0      |

# P05 group Input terminals

| Function code | Name                                  | Description                                          | Default | Modify |
|---------------|---------------------------------------|------------------------------------------------------|---------|--------|
| P05.00        | HDI input type                        | 0: Reserved<br>1: HDI is digital input               | 1       | 0      |
| P05.01        | S1 terminals<br>function<br>selection | 0: No function<br>1: Run forward<br>2: Run reversely | 42      | 0      |

| Function code | Name                                   |                                                                                                                                                                                     | De                                                                                                                                                                                                                                                                                                                                                                                                                                               | escriptio | on |  | Default | Modify |  |  |
|---------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|--|---------|--------|--|--|
| P05.02        | S2 terminals<br>function<br>selection  | 4: Jog forwa<br>5: Jog rever                                                                                                                                                        | 3: Reserved 4: Jog forward 5: Jog reversely 6: Coast to stop 7: Reset faults 8: Pause running 9: External fault input 10–35: Reserved 36: Switch the running command channel to keypad                                                                                                                                                                                                                                                           |           |    |  |         |        |  |  |
| P05.03        | S3 terminals<br>function<br>selection  | 7: Reset fau<br>8: Pause rui                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |    |  |         |        |  |  |
| P05.04        | S4 terminals<br>function<br>selection  | 10–35: Reso<br>36: Switch t                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |    |  |         |        |  |  |
| P05.05        | S5 terminals<br>function<br>selection  | terminal<br>38: Switch t                                                                                                                                                            | 38: Switch the running command channel to                                                                                                                                                                                                                                                                                                                                                                                                        |           |    |  |         |        |  |  |
| P05.09        | HDI terminals<br>function<br>selection | 39–41: Resi<br>42: Forcibly<br>(Switching-of<br>frequency; a<br>controlled b<br>43: Full-wat<br>44: Empty-v<br>45: Two-pha<br>motor<br>46: PV digit:<br>(used for au<br>47: Termina | communication 39–41: Reserved 42: Forcibly switches to power frequency (Switching-on indicates switching to power frequency; and switching-off indicates input controlled by the keypad.) 43: Full-water signal 44: Empty-water signal 45: Two-phase control mode of single-phase motor 46: PV digital input without the boost module (used for automatic switching) 47: Terminal frequency increment by 1 48: Terminal frequency decrement by 1 |           |    |  |         |        |  |  |
| P05.10        | Input terminal polarity                | 0x000-0x10<br>BIT8 II<br>HDI                                                                                                                                                        | 0x000                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0         |    |  |         |        |  |  |

## P06 group Output terminals

| Function code | Name       | Description | Default | Modify |
|---------------|------------|-------------|---------|--------|
| P06.03        | RO1 output | 0: Disable  | 30      | 0      |
| P06.04        | RO2 output | 1: Running  | 5       | 0      |

| Function code | Name                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Default | Modify |
|---------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                                    | 2: Running forward 3: Running reversely 4: Jogging 5: Inverter in fault 6: Frequency level detection FDT1 7: Frequency level detection FDT2 8: Frequency reached 9: Zero-speed running 10: Upper limit frequency reached 11: Lower limit frequency reached 12: Ready for running 13: Pre-magnetizing 14: Overload alarm 15: Underload alarm 16-19: Reserved 20: External fault is valid 21: Reserved 22: Running time reached 23: Modbus communication virtual terminal output 24-25: Reserved 26: DC bus voltage established 27: In weak light 28-29: Reserved 30: Switches to PV input mode |         |        |
| P06.05        | Output terminal polarity selection | Used to set the polarity of output terminals. When a bit is 0, the output terminal is positive. When a bit is 1, the output terminal is negative.  BIT1 BIT0 RO2 RO1  Setting range: 0-F                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0      |
| P06.10        | RO1 switch-on delay                | 0.000–50.000s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.000s | 0      |
| P06.11        | RO1 switch-off delay               | 0.000–50.000s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.000s | 0      |

| Function code | Name                 | Description   | Default | Modify |
|---------------|----------------------|---------------|---------|--------|
| P06.12        | RO2 switch-on delay  | 0.000–50.000s | 0.000s  | 0      |
| P06.13        | RO2 switch-off delay | 0.000–50.000s | 0.000s  | 0      |

## P07 group Human-machine interface

| Function code | Name                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default | Modify |
|---------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P07.00        | User password         | 0–65535  When you set the function code to a nonzero number, password protection is enabled.  If you set the function code to 00000, the previous user password is cleared and password protection is disabled.  After the user password is set and takes effect, you cannot enter the parameter menu if you enter an incorrect password. Please remember your password and save it in a secure place.  After you exit the function code editing interface, the password protection function is enabled within 1 minute. If password protection is enabled, "0.0.0.0.0" is displayed when you press the PRG/ESC key again to enter the function code editing interface. You need to enter the correct user password to enter the interface.  Note: Restoring the default values may delete the user password. Exercise caution before using this function. | 0       | 0      |
| P07.02        | Function of QUICK/JOG | O: No function I: Jogging running. Press QUICK/JOG to begin the jogging running. C: Switch the display state by the shifting key. Press QUICK/JOG to shift the displayed function code from right to left.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6       | 0      |

| Function | M             | Barantustan.                                    | D. Carall | M      |
|----------|---------------|-------------------------------------------------|-----------|--------|
| code     | Name          | Description                                     | Default   | Modify |
|          |               | 3: Switch between forward rotations and         |           |        |
|          |               | reverse rotations. Press QUICK/JOG to           |           |        |
|          |               | shift the direction of the frequency            |           |        |
|          |               | commands. This function is only valid in the    |           |        |
|          |               | keypad commands channels.                       |           |        |
|          |               | 4: Clear UP/DOWN settings. Press                |           |        |
|          |               | QUICK/JOG to clear the set value of             |           |        |
|          |               | UP/DOWN.                                        |           |        |
|          |               | 5: Coast to stop. Press QUICK/JOG to            |           |        |
|          |               | coast to stop.                                  |           |        |
|          |               | 6: Switch command channels in sequence.         |           |        |
|          |               | Press QUICK/JOG key to switch the               |           |        |
|          |               | running command reference mode in               |           |        |
|          |               | sequence.                                       |           |        |
|          |               | 7: Quick commissioning mode (based on           |           |        |
|          |               | non-factory parameters)                         |           |        |
|          |               | Note: Press QUICK/JOG to shift between          |           |        |
|          |               | forward rotation and reverse rotation, the      |           |        |
|          |               | inverter does not record the state after        |           |        |
|          |               | shifting during powering off. The inverter will |           |        |
|          |               | run according to parameter P00.13 during        |           |        |
|          |               | next powering on.                               |           |        |
|          | Sequence of   | When P07.02=6, set the sequence of              |           |        |
|          | switching     | switching running-command channels by           |           |        |
|          | running-      | pressing this key.                              |           |        |
| P07.03   | command       | 0: Keypad→Terminal→Communication                | 1         | 0      |
|          | channels by   | 1: Keypad←→Terminal                             |           |        |
|          | pressing      | 2: Keypad←→Communication                        |           |        |
|          | QUICK/JOG     | 3: Terminal←→Communication                      |           |        |
|          |               | Used to specify the stop function validity of   |           |        |
|          |               | STOP/RST. For fault reset, STOP/RST is          |           |        |
|          |               | valid in any conditions.                        |           |        |
|          | Stop function | 0: Valid only for keypad control                |           |        |
| P07.04   | validity of   | 1: Valid both for keypad and terminal           | 1         | 0      |
|          | STOP/RST      | control                                         |           |        |
|          |               | 2: Valid both for keypad and                    |           |        |
|          |               | communication control                           |           |        |
|          |               | 3: Valid for all control modes                  |           |        |

| Function code | Name                                                      | Description                                                                                                                                                                                                                                                            | Default          | Modify |
|---------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|
| P07.11        | Boost module temperature                                  | Setting range: -20.0–120.0°C                                                                                                                                                                                                                                           | 0.0°C            | •      |
| P07.12        | Inverter module temperature                               | Setting range: -20.0–120.0°C                                                                                                                                                                                                                                           | 0.0°C            | •      |
| P07.13        | Control board software version                            | Setting range: 1.00–655.35                                                                                                                                                                                                                                             | Version depended |        |
| P07.14        | Local<br>accumulative<br>running time                     | Setting range: 0–65535h                                                                                                                                                                                                                                                | 0h               |        |
| P07.15        | Inverter<br>electricity<br>consumption<br>high-order bits | Used to display the electricity consumption of the inverter.  Inverter electricity consumption = P07.15*1000 + P07.16                                                                                                                                                  | 0kkWh            | •      |
| P07.16        | Inverter<br>electricity<br>consumption low-<br>order bits | Setting range of <u>P07.16</u> : 0–65535kkWh (*1000)<br>Setting range of <u>P07.16</u> : 0.0–999.9 kWh                                                                                                                                                                 | 0.0kWh           | •      |
| P07.27        | Present fault type                                        | 0: No fault 1: Inverter unit U-phase protection (OUt1)                                                                                                                                                                                                                 | 0                | •      |
| P07.28        | Last fault type                                           | <ul><li>2: Inverter unit V-phase protection (OUt2)</li><li>3: Inverter unit W-phase protection (OUt3)</li></ul>                                                                                                                                                        | 0                | •      |
| P07.29        | 2nd-last fault<br>type                                    | 4: Overcurrent during acceleration (OC1) 5: Overcurrent during deceleration (OC2)                                                                                                                                                                                      | 0                | •      |
| P07.30        | 3rd-last fault type                                       | Overcurrent during constant speed running (OC3)     Overvoltage during acceleration (OV1)                                                                                                                                                                              | 0                | •      |
| P07.31        | 4th-last fault type                                       | 8: Overvoltage during deceleration (OV2) 9: Overvoltage during constant speed                                                                                                                                                                                          | 0                | •      |
| P07.32        | 5th-last fault type                                       | running (OV3)  10: Bus undervoltage (UV)  11: Motor overload (OL1)  12: Inverter overload (OL2)  13: Phase loss on input side (SPI)  14: Phase loss on output side (SPO)  15: Boost module overheat (OH1)  16: Inverter module overheat (OH2)  17: External fault (EF) | 0                | •      |

| Function | Name | Description                                           | Default | Modify |
|----------|------|-------------------------------------------------------|---------|--------|
| code     | Name | Description                                           | Detault | Wodity |
|          |      | 18: RS485 communication fault (CE)                    |         |        |
|          |      | 19: Current detection fault (ItE)                     |         |        |
|          |      | 20: Motor antotune fault (tE)                         |         |        |
|          |      | 21: EEPROM operation error (EEP)                      |         |        |
|          |      | 22: PID feedback disconnection (PIDE)                 |         |        |
|          |      | 23: Braking unit fault (bCE)                          |         |        |
|          |      | 24: Running time reached (END)                        |         |        |
|          |      | 25: Electronic overload (OL3)                         |         |        |
|          |      | 26 - 31:Reserved                                      |         |        |
|          |      | 32: To-ground short-circuit fault 1 (ETH1)            |         |        |
|          |      | 33: To-ground short-circuit fault 2 (ETH2)            |         |        |
|          |      | 34: Speed deviation fault (dEu)                       |         |        |
|          |      | 35: Mal-adjustment (STo)                              |         |        |
|          |      | 36:Underload fault (LL)                               |         |        |
|          |      | 37: Hydraulic probe damage (tSF)                      |         |        |
|          |      | 38: PV reverse connection fault (PINV)                |         |        |
|          |      | 39: PV overcurrent (PVOC)                             |         |        |
|          |      | 40: PV overvoltage (PVOV)                             |         |        |
|          |      | 41: PV undervoltage (PVLV)                            |         |        |
|          |      | 42: Fault on 422 communication with the               |         |        |
|          |      | boost module (E-422)                                  |         |        |
|          |      | 43: Bus overvoltage detected on the boost module (OV) |         |        |
|          |      | The inverter decelerates to stop when                 |         |        |
|          |      | encountering the following faults:                    |         |        |
|          |      | (SPI): Phase loss on input side                       |         |        |
|          |      | (OH1): Rectifier module overheating                   |         |        |
|          |      | (OH2): Inverter module overheating                    |         |        |
|          |      | (CE): RS485 communication fault                       |         |        |
|          |      | (EEP): EEPROM operation error                         |         |        |
|          |      | (PIDE): PID feedback disconnection                    |         |        |
|          |      | (END): Running time reached                           |         |        |
|          |      | (OL3): Electronic overload                            |         |        |
|          |      | (LL): Underload fault                                 |         |        |
|          |      | (tSF): Hydraulic probe damage fault                   |         |        |
|          |      | (E-422): 422 communication fault (boost               |         |        |
|          |      | module)                                               |         |        |
|          |      | Note: Faults 38-40 are only detected in               |         |        |

| Function | Name                            | Description                                               | Default | Modify  |
|----------|---------------------------------|-----------------------------------------------------------|---------|---------|
| code     | Name                            | Description                                               | Delault | Widairy |
|          |                                 | boost. The boost module stops working                     |         |         |
|          |                                 | immediately after detecting a fault, while                |         |         |
|          |                                 | returning the fault information to the inverter           |         |         |
|          |                                 | module in the next data returning.                        |         |         |
|          |                                 | Alarms:                                                   |         |         |
|          |                                 | 61: Light-weak alarm (A-LS)                               |         |         |
|          |                                 | 62: Underload alarm (A-LL)<br>63: Full-water alarm (A-tF) |         |         |
|          |                                 | 64: Empty-water alarm (A-tL)                              |         |         |
|          |                                 | 65: Mains power not connected alarm (A-                   |         |         |
|          |                                 | SPI)                                                      |         |         |
|          |                                 | Note: The alarm will be not recorded into                 |         |         |
|          |                                 | the fault but can be read by Modbus.                      |         |         |
| P07.33   | Running frequence               | •                                                         | 0.00Hz  | •       |
| P07.34   | ,                               | equency at present fault                                  | 0.00Hz  | •       |
| P07.35   | Output voltage at               |                                                           | 0V      | •       |
| P07.36   | Output current at present fault |                                                           | 0.0A    | •       |
| P07.37   | Bus voltage at present fault    |                                                           | 0.0V    | •       |
| P07.38   | Max. temperature                | at present fault                                          | 0.0℃    | •       |
| P07.39   | Input terminal stat             | e at present fault                                        | 0       | •       |
| P07.40   | Output terminal st              | ate at present fault                                      | 0       | •       |
| P07.41   | Running frequency               | y at last fault                                           | 0.00Hz  | •       |
| P07.42   | Ramp reference fr               | equency at last fault                                     | 0.00Hz  | •       |
| P07.43   | Output voltage at               | ast fault                                                 | 0V      | •       |
| P07.44   | Output current at I             | ast fault                                                 | 0.0A    | •       |
| P07.45   | Bus voltage at las              | t fault                                                   | 0.0V    | •       |
| P07.46   | Max. temperature                | at last fault                                             | 0.0℃    | •       |
| P07.47   | Input terminal stat             | e at last fault                                           | 0       | •       |
| P07.48   | Output terminal st              | ate at last fault                                         | 0       | •       |
| P07.49   | Running frequency               | y at 2nd-last fault                                       | 0.00Hz  | •       |
| P07.50   | Ramp reference fr               | equency at 2nd-last fault                                 | 0.00Hz  | •       |
| P07.51   | Output voltage at:              | 2nd-last fault                                            | 0V      | •       |
| P07.52   | Output current at 2             | 2nd-last fault                                            | 0.0A    | •       |
| P07.53   | Bus voltage at 2nd              | d-last fault                                              | 0.0V    | •       |
| P07.54   | Max. temperature                | at 2nd-last fault                                         | 0.0℃    | •       |
| P07.55   | Input terminal stat             | e at 2nd-last fault                                       | 0       | •       |
| P07.56   | Output terminal st              | ate at 2nd-last fault                                     | 0       | •       |

| Function | Name                    | Description                                                                                                                                                                                                                                     | Default | Modify |
|----------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| code     | Name                    | Description                                                                                                                                                                                                                                     | Delault | Woully |
| P07.57   | 6th-last fault type     | 0: No fault 1: Inverter unit U-phase protection (OUt1)                                                                                                                                                                                          | 0       | •      |
| P07.58   | 7th-last fault type     | 2: Inverter unit V-phase protection (OUt2) 3: Inverter unit W-phase protection (OUt3) 4: Overcurrent during acceleration (OC1)                                                                                                                  | 0       | •      |
| P07.59   | 8th-last fault type     | 5: Overcurrent during deceleration (OC2) 6: Overcurrent during constant speed                                                                                                                                                                   | 0       | •      |
| P07.60   | 9th-last fault type     | running (OC3) 7: Overvoltage during acceleration (OV1) 8: Overvoltage during deceleration (OV2)                                                                                                                                                 | 0       | •      |
| P07.61   | 10th-last fault<br>type | 9: Overvoltage during constant speed running (OV3)                                                                                                                                                                                              | 0       | •      |
| P07.62   | 11th-last fault<br>type | 10: Bus undervoltage (UV)<br>11: Motor overload (OL1)                                                                                                                                                                                           | 0       | •      |
| P07.63   | 12th-last fault<br>type | 12: Inverter overload (OL2)<br>13: Phase loss on input side (SPI)<br>14: Phase loss on output side (SPO)                                                                                                                                        | 0       | •      |
| P07.64   | 13th-last fault<br>type | 15: Boost module overheat (OH1) 16: Inverter module overheat (OH2)                                                                                                                                                                              | 0       | •      |
| P07.65   | 14th-last fault<br>type | 17: External fault (EF) 18: RS485 communication fault (CE)                                                                                                                                                                                      | 0       | •      |
| P07.66   | Present alarm type      | 19: Current detection fault (ItE) 20: Motor antotune fault (tE)                                                                                                                                                                                 | 0       | •      |
| P07.67   | Last alarm type         | 21: EEPROM operation error (EEP) 22: PID feedback disconnection (PIDE)                                                                                                                                                                          | 0       | •      |
| P07.68   | 2nd-last alarm<br>type  | 23: Braking unit fault (bCE) 24: Running time reached (END) 25: Electronic overload (OL3)                                                                                                                                                       | 0       | •      |
| P07.69   | 3rd-last alarm<br>type  | 26–31:Reserved 32: To-ground short-circuit fault 1 (ETH1)                                                                                                                                                                                       | 0       | •      |
| P07.70   | 4th-last alarm type     | 33: To-ground short-circuit fault 2 (ETH2) 34: Speed deviation fault (dEu)                                                                                                                                                                      | 0       | •      |
| P07.71   | 5th-last alarm<br>type  | 35: Mal-adjustment (STo) 36:Underload fault (LL) 37: Hydraulic probe damage (tSF) 38: PV reverse connection fault (PINV) 39: PV overcurrent (PVOC) 40: PV overvoltage (PVUV) 41: PV undervoltage (PVLV) 42: Fault on 422 communication with the | 0       | •      |

| Function | Name | Description                                 | Default | Modify |
|----------|------|---------------------------------------------|---------|--------|
| code     |      | · ·                                         |         |        |
|          |      | boost module (E-422)                        |         |        |
|          |      | 43: Bus overvoltage detected on the boost   |         |        |
|          |      | module (OV)                                 |         |        |
|          |      | The inverter decelerates to stop when       |         |        |
|          |      | encountering the following faults:          |         |        |
|          |      | (SPI): Phase loss on input side             |         |        |
|          |      | (OH1): Rectifier module overheating         |         |        |
|          |      | (OH2): Inverter module overheating          |         |        |
|          |      | (CE): RS485 communication fault             |         |        |
|          |      | (EEP): EEPROM operation error               |         |        |
|          |      | (PIDE): PID feedback disconnection          |         |        |
|          |      | (END): Running time reached                 |         |        |
|          |      | (OL3): Electronic overload                  |         |        |
|          |      | (LL): Underload fault                       |         |        |
|          |      | (tSF): Hydraulic probe damage fault         |         |        |
|          |      | (E-422): 422 communication fault (boost     |         |        |
|          |      | module)                                     |         |        |
|          |      | Note: Faults 38–40 are only detected in     |         |        |
|          |      | boost. The boost module stops working       |         |        |
|          |      | immediately after detecting a fault, while  |         |        |
|          |      | returning the fault information to the      |         |        |
|          |      | inverter module in the next data returning. |         |        |
|          |      | Alarms:                                     |         |        |
|          |      | 61: Light-weak alarm (A-LS)                 |         |        |
|          |      | 62: Underload alarm (A-LL)                  |         |        |
|          |      | 63: Full-water alarm (A-tF)                 |         |        |
|          |      | 64: Empty-water alarm (A-tL)                |         |        |
|          |      | 65: Mains power not connected alarm (A-     |         |        |
|          |      | SPI)                                        |         |        |
|          |      | Note: The alarm will be not recorded into   |         |        |
|          |      | the fault but can be read by Modbus.        |         |        |

## P08 group Enhanced functions

| Function code | Name                   | Description | Default | Modify |
|---------------|------------------------|-------------|---------|--------|
| P08.28        | Auto fault reset count | 0–10        | 5       | 0      |

| Function code | Name                         | Description                                                                                                                                                              | Default | Modify |
|---------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P08.29        | Auto fault reset interval    | 0.1–3600.0s                                                                                                                                                              | 10.0s   | 0      |
| P08.53        | Enable hidden function codes | 0: Disable 1: Enable Setting range: 0–1 Note: This function code is not saved in EEPROM, that is, it remains the disabled state by default after power failure recovery. | 0       | 0      |

## 6.2 Function parameters special for solar pump

#### P11 group Protection parameters

| Function code | Name                                                                 | Description                                                                                                                                                                                                                                                                                        | Default           | Modify |
|---------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| P11.00        | Protection<br>against phase<br>loss                                  | 0x000–0x011 LED ones: 0: Software protection against input phase loss disabled 1: Software protection against input phase loss enabled LED tens: 0: Software protection against output phase loss disabled 1: Software protection against output phase loss enabled LED hundreds: Reserved 000–111 | Model<br>depended | 0      |
| P11.01        | Voltage point<br>for frequency<br>drop at<br>transient power-<br>off | 20.0%–120.0%                                                                                                                                                                                                                                                                                       | 80.0%             | 0      |
| P11.02        | Frequency<br>decrease ratio<br>at sudden                             | Setting range: 0.00– <u>P00.03</u> (Hz)  If the bus voltage drops to the sudden frequency decreasing point due to the power                                                                                                                                                                        | 10.00Hz           | 0      |

| Function | Name                                                  | December                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default           | NA1:6  |
|----------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| code     | Name                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default           | Modify |
|          | power loss                                            | loss of the grid, the inverter begins to decrease the running frequency according to P11.02 to make the motor in power generation state. The regenerative power can maintain the bus voltage to ensure normal running of the inverter until the recovery of power.  When this value is set to 0, frequency drop at power-off is disabled. When this value is not 0 and the PV is not enabled (P15.00=0), frequency drop at power-off can be enabled. |                   |        |
| P11.03   | Overvoltage stall protection                          | 0–1<br>0: Disable<br>1: Enable                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                 | 0      |
| P11.04   | Overvoltage<br>stall protection<br>voltage            | 110–150(%)                                                                                                                                                                                                                                                                                                                                                                                                                                           | Model<br>depended | 0      |
| P11.05   | Current limit selection                               | 0x00-0x12 Ones: Current limit action selection 0: Invalid 1: Always valid 2: Invalid during DEC Tens: Hardware current limit overload alarm selection 0: Valid 1: Invalid                                                                                                                                                                                                                                                                            | 0x01              | 0      |
| P11.06   | Automatic<br>current limit<br>level                   | 50.0–200.0(%)                                                                                                                                                                                                                                                                                                                                                                                                                                        | Model<br>depended | 0      |
| P11.07   | Frequency drop<br>rate during<br>current limit        | 0.00-50.00(Hz/s)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.00             | 0      |
| P11.08   | Pre-alarm<br>selection for<br>inverter/motor<br>OL/UL | 0x0000-0x1131 LED ones: 0: Motor overload/underload pre-alarm, relative to rated motor current; 1: Inverter overload/underload pre-alarm, relative to rated inverter current. LED tens: 0: The inverter continues running after overload/underload alarm; 1: The inverter continues running after underload alarm, and stops running after                                                                                                           | 0x000             | 0      |

| Function code | Name                                                       | Description                                                                                                                                                                                                                                           | Default           | Modify |
|---------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
|               |                                                            | overload fault; 2: The inverter continues running after overload alarm, and stops running after underload fault; 3: The inverter stops running after overload/underload fault. LED hundreds: 0: Always detect 1: Detect during constant-speed running |                   |        |
| P11.09        | Overload pre-<br>alarm detection<br>level                  | P11.11–200%                                                                                                                                                                                                                                           | Model<br>depended | 0      |
| P11.10        | Overload pre-<br>alarm detection<br>time                   | 0.1–3600.0s                                                                                                                                                                                                                                           | 1.0s              | 0      |
| P11.11        | Underload pre-<br>alarm detection<br>level                 | 0%–P11.09                                                                                                                                                                                                                                             | 50%               | 0      |
| P11.12        | Underload pre-<br>alarm detection<br>time                  | 0.1–3600.0s                                                                                                                                                                                                                                           | 1.0s              | 0      |
| P11.13        | Fault output<br>terminal action<br>upon fault<br>occurring | 0x00–0x11 LED ones: 0: Act at undervoltage 1: Do not act at undervoltage LED tens: 0: Act during the automatic reset period 1: Do not act during the automatic reset period                                                                           | 0x00              | 0      |
| P11.14        | Speed deviation detection value                            | 0.0–50.0%                                                                                                                                                                                                                                             | 10.0%             | 0      |
| P11.15        | Speed deviation<br>detection time                          | 0.0–10.0s                                                                                                                                                                                                                                             | 0.5s              | 0      |

## P14 group Serial communication

| Function code | Name                              | Description                                                                                                                                                                          | Default | Modify |
|---------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P14.00        | Local<br>communication<br>address | Setting range: 1–247<br>When the master writes the slave<br>communication address to 0 indicating a<br>broadcast address in a frame, all the<br>salves on the Modbus bus receive the | 1       | 0      |

| Function code | Name                         | Description                                                                                                                                                                                                                                                                                                                                                               | Default | Modify |
|---------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                              | frame but do not respond to it. Local communication address is unique in the communication network, which is the basis for point-to-point communication between the upper computer and the inverter.  Note: The communication address of a slave cannot be set to 0.                                                                                                      |         |        |
| P14.01        | Communication baud rate      | The function code is used to set the data transmission speed between upper computer and the inverter. 0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS 6: 57600BPS Note: The baud rate set on the inverter must be consistent with that on the upper computer. Otherwise, the communication fails. A greater baud rate indicates faster communication. | 4       | 0      |
| P14.02        | Data bit check               | The data format set on the inverter must be consistent with that on the upper computer. Otherwise, the communication fails.  0: No check (N, 8, 1) for RTU  1: Even check (E, 8, 1) for RTU  2: Odd check (O, 8, 1) for RTU  3: No check (N, 8, 2) for RTU  4: Even check (E, 8, 2) for RTU  5: Odd check (O, 8, 2) for RTU                                               | 1       | 0      |
| P14.03        | Communication response delay | 0–200ms The function code indicates the communication response delay, that is, the interval from when the inverter completes receiving data to when it sends response data to the upper                                                                                                                                                                                   | 5       | 0      |

| Function code | Name                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                          | Default | Modify |
|---------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                                          | computer. If the response delay is shorter than the inverter processing time, the inverter sends response data to the upper computer after processing data. If the delay is longer than the inverter processing time, the inverter does not send response data to the upper computer until the delay is reached although data has been processed.                                                                    |         |        |
| P14.04        | RS485<br>communication<br>timeout period | 0.0 (invalid)–60.0s When the function code is set to 0.0, the communication timeout time is invalid. When the function code is set a nonzero value, the rectifier reports the "485 communication fault" (CE) if the communication interval exceeds the value. In general, the function code is set to 0.0. When continuous communication is required, you can set the function code to monitor communication status. | 0.0s    | 0      |

## P15 group Functions special for solar inverter

| Function code | Name                     | Description                                                                                                                                                                                          | Default | Modify |
|---------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P15.00        | Solar inverter selection | O: Disable 1: Enable The value 0 indicates solar control is invalid, and this function group is not used. The value 1 indicates solar control is valid, this function group can be modified.         | 1       | 0      |
| P15.01        |                          | O: Voltage     Hax. power tracking     The value 0 indicates using the voltage giving method, the reference voltage is P15.02, and it is a fixed value.  The value 1 indicates the reference voltage | 1       | 0      |

| Function code | Name                                   | Description                                                                                                                                                                                                                                                                                                                            | Default           | Modify |
|---------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
|               |                                        | is given by tracking the max. power. The reference voltage keeps changing until the system becomes stable.  Note: This parameter is invalid when terminal function 43 is valid.                                                                                                                                                        |                   |        |
| P15.02        |                                        | 0.0–6553.5 Vdc When P15.01 is 0, this parameter determines the reference voltage. (During testing, the reference voltage value must be less than the PV input voltage. Otherwise, the system runs at the lower limit of frequency.)                                                                                                    | Model<br>depended | 0      |
| P15.03        | PI control<br>deviation limit          | 0.0–100.0% (100.0% corresponds to P15.02) PI adjustment is performed only when the ratio of the difference between the actual voltage and reference voltage to the reference voltage, which is abs (Actual voltage – Reference voltage) * 100.0% / (Reference voltage), exceeds P15.03. The default value is 0.0%. abs: absolute value | 0.0%              | 0      |
| P15.04        | PID output<br>upper limit<br>frequency | P15.05–100.0% (100.0% corresponds to P00.03)  P15.04 is used to limit the Max. value of target frequency, and 100.0% corresponds to P00.03.  After PI adjustment, the target frequency cannot exceed the upper limit.                                                                                                                  | 100.0%            | 0      |
| P15.05        | PID output<br>lower limit<br>frequency | 0.0%—P15.04 (100.0% corresponds to P00.03)  P15.05 is used to limit the Min. value of target frequency, and 100.0% corresponds to P00.03.  After PI adjustment, the target frequency cannot be less than the lower limit.                                                                                                              | 20.0%             | 0      |
| P15.06        | KP1                                    | 0.00–100.00 Proportion coefficient 1 of the target                                                                                                                                                                                                                                                                                     | 5.00              | 0      |

| Function code | Name                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Default | Modify |
|---------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                                     | frequency. A greater value indicates stronger effect and faster adjustment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |
| P15.07        | KI1                                 | 0.00–100.00 Integral coefficient 1 of target frequency A greater value indicates stronger effect and faster adjustment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.00    | 0      |
| P15.08        | KP2                                 | 0.00–100.00 Proportion coefficient 2 of target frequency. A greater value indicates stronger effect and faster adjustment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.00   | 0      |
| P15.09        | KI2                                 | 0.00–100.00 Integral coefficient 2 of the target frequency. A greater value indicates stronger effect and faster adjustment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.00   | 0      |
| P15.10        | PI switching point                  | 0.0–6553.5Vdc  If the absolute value of PV voltage minus reference value is greater than P15.10, P15.08 and P15.09 are used. Otherwise, P15.06 and P15.07 are used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.0V   | 0      |
| P15.11        | Water level<br>control<br>selection | 0: Control through digital input 1: Al1(the water-level signal is input through Al1, not supported currently) 2: Al2 (the water-level signal is input through Al2, not supported currently) 3: Al3 (the water-level signal is input through Al3, not supported currently) If the function code is 0, the water-level signal is controlled by the digital input. See 43 and 44 functions of S terminals in group P05 for detailed information. If the full-water signal is valid, the system will report the alarm (A-tF) and sleep after the time of P15.14. During the alarm, the full-water signal is invalid and the system will clear the alarm after the time of P15.15. If the empty- water signal is valid, the system will report the alarm (A-tL) and sleep after the time of | 0       | ©      |

| Function | Name                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default | Modify |
|----------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|          |                                   | P15.16. During the alarm, the empty -water signal is invalid and the system will clear the alarm after the time of P15.17.  If the function code is 1 - 3, it is the reference of water-level control analog signal. For details, see P15.12 and P12.13.  0.0–100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |        |
| P15.12   | Full-water<br>level<br>threshold  | This code is valid when P15.11 water level control is based on analog input. If the detected water level control analog signal is less than the water level threshold P15.12 and keeps in the state after the delay time P15.14, the system reports A-tF and sleeps. If the delay time is not reached, the signal is bigger than the water level threshold, the time will be cleared automatically. When the measured water level control analog signal is less than the water level threshold, the delay time will be counted again.  0 is full water and 1 is no water.  During the full-water alarm, if the detected water level signal is higher than the threshold of P15.12 and the delay counts, the alarm is cleared after the time set by P15.15 is reached in this continuous state continues. During the non-continuous application, the delay timing will clear automatically. | 25.0%   | 0      |
| P15.13   | Empty-water<br>level<br>threshold | 0.0–100.0% This code is valid when P15.11 water level control is based on analog input. If the detected water level control analog signal is greater than the water level threshold P15.13 and keeps in the state after the delay time P15.16, the system reports A-tL and sleeps. If the delay time is not reached (that means non-continuous), the delay time is automatically cleared. When                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.0%   | 0      |

| Function code | Name                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                   | Default | Modify |
|---------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                                                 | the detected water level control analog signal is less than the water level threshold, the delay counts.  During the empty-water alarm, if the detected water level control analog signal is less than the water level threshold P15.13 and delay counts, the empty-water alarm is cleared after the delay time set by P15.17 in this continuous state. In the non-continuous state, the delay time is automatically cleared. |         |        |
| P15.14        | Full-water<br>level delay                       | 0-10000s<br>Time setting on full-water level delay. (This<br>parameter is still valid for digital full-water<br>signal.)                                                                                                                                                                                                                                                                                                      | 5s      | 0      |
| P15.15        | Full-water<br>level wake-up<br>delay            | 0–10000s<br>Time setting on full-water level wake-up<br>delay. (This parameter is still valid for digital<br>full-water signal.)                                                                                                                                                                                                                                                                                              | 20s     | 0      |
| P15.16        | Empty-water level delay                         | 0–10000s Time setting on empty-water level delay. (This parameter is still valid for digital empty-<br>water signal.)                                                                                                                                                                                                                                                                                                         | 5s      | 0      |
| P15.17        | Empty-water<br>level wake-up<br>delay           | 0–10000s Time setting on empty-water level wake-up delay. (This parameter is still valid for digital empty-water signal.)                                                                                                                                                                                                                                                                                                     | 20s     | 0      |
| P15.18        | Hydraulic<br>probe<br>damage                    | 0.0–100.0%  If P15.18 is 0.0%, it indicates P15.18 is invalid.  If P15.18 is not 0.0%, when the detected water level control analog signal is greater than the value set in P15.18, the (tSF) fault is reported and the inverter stops.                                                                                                                                                                                       | 0.0%    | 0      |
| P15.19        | Running time<br>of dry<br>pumping<br>protection | 0.0–1000.0s Duration in which the water pump runs in dry pumping state. In continuous dry pumping condition, the underload alarm (A-LL) is                                                                                                                                                                                                                                                                                    | 60.0s   | 0      |

| Function code | Name                                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default | Modify |
|---------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                                                               | reported when the running time is reached.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |
| P15.20        | Running<br>detection<br>value of dry<br>pumping<br>protection | 0.0–100.0%  The value 0.0% indicates the dry pumping protection function is disabled.  A value rather than 0.0% indicates it is determined by P15.20  When the absolute value of target frequency minus ramp frequency is less than or equal to 2.00Hz, if the actual detection value is continuously less than P15.20, the system reports the underload alarm with a delay specified by P15.19. Otherwise, the system runs properly. In the non-continuous situation, the delay counter is automatically cleared.                                                                  | 0.0%    | 0      |
| P15.21        | Dry pumping reset delay                                       | 0.0–6000.0s Dry pumping protection reset delay. In dry pumping state, the counting on the dry pumping protection running time and that on the dry pumping protection reset delay is performed synchronously. Generally, the value needs to be greater than P15.19 so that the system can report the underload alarm when the dry pumping protection running time is reached and then reset can be performed when the time P15.21–P15.19 elapsed. If the value of P15.21 is the same as that of P15.19, auto reset is performed at the same time as the underload alarm is reported. | 660.0s  | 0      |
| P15.22        | Dry pumping protection selection                              | 0–1 0: Dry pumping protection is determined based on output power. 1: Dry pumping protection is determined based on output current.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0       | 0      |
| P15.23        | Weak-light<br>delay                                           | 0.0–3600.0s<br>Time setting on weak-light delay.<br>When the output frequency is less than or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.0s  | 0      |

| Function | Name                                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default | Modify |
|----------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| code     | Name                                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Delauit | wouny  |
|          |                                                           | equal to the PI output frequency lower limit and the delay counting is started, which reaches the weak-light delay time, the system reports the weak-light alarm (A-LS) and then sleeps. In the non-continuous situation, the delay counter is automatically cleared.  Note:  When the bus voltage is lower than the undervoltage point or the PV voltage is lower than 70V, the system directly reports the weak-light alarm without any delay.  If P15.32=0, in weak-light condition, the system automatically switch to the |         |        |
| P15.24   | Weak-light<br>wake-up<br>delay                            | power-frequency input mode.  0.0–3600.0s Time setting on weak-light wake-up delay. If the weak-light alarm is reported, the system clears the alarm with the weak-light wake-up delay and then re-enters the running state. When P15.32=0, if the PV voltage is greater than P15.34, the system switches from the power-frequency input mode to the PV input mode with the weak-light wake-up delay.                                                                                                                           | 300.0s  | 0      |
| P15.25   | Initial actual reference voltage display                  | 0.0–2000.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0       | •      |
| P15.26   | Min.<br>reference<br>voltage in<br>max. power<br>tracking | 0.00–1.00 Used to set the min. reference voltage in max. power tracking. Min. reference voltage in max. power tracking = (Open-circuit voltage of photovoltaic panels) * P15.26, Open-circuit voltage of photovoltaic panels = P15.25 + P15.28 Track the max. power in the range of Min. reference voltage in max. power tracking—                                                                                                                                                                                             | 0.50    | 0      |

| Function code | Name                                                               |                                                       |                                                                                                                                                         | Description                                                                                                                                      |                                                                                           |                                   | Default | Modify |
|---------------|--------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------|---------|--------|
|               |                                                                    | min<br>beto<br>whi<br>con<br>with                     | reference<br>ween them<br>ch means<br>responding<br>nin the rang                                                                                        | 7 must be great voltage. A sm indicates a faster trackin to the max. pge. P15.26 an cording to the                                               | naller differen<br>smaller ran<br>g. The volta<br>power must<br>d <u>P15.27</u> m         | nce<br>ge,<br>age<br>be<br>ust    |         |        |
| P15.27        | Max.<br>reference<br>voltage in<br>max. power                      | trac<br>It is<br>max                                  | king– <u>P15.3</u><br>the max.<br>x. power tra                                                                                                          | e voltage in  11 voltage tracke cking is valid. ue depends o  Max. voltage reference                                                             | ed when MF                                                                                | PT                                | 400.0V  | 0      |
|               | tracking                                                           |                                                       | -SS2                                                                                                                                                    | 400                                                                                                                                              | 400                                                                                       |                                   |         |        |
|               |                                                                    |                                                       | -S2                                                                                                                                                     | 400                                                                                                                                              | 400                                                                                       |                                   |         |        |
|               |                                                                    |                                                       | -2                                                                                                                                                      | 400                                                                                                                                              | 400                                                                                       |                                   |         |        |
|               |                                                                    |                                                       | -4                                                                                                                                                      | 750                                                                                                                                              | 750                                                                                       |                                   |         |        |
| P15.28        | Adjustment of initial reference voltage                            |                                                       | 95%<br>erence volt                                                                                                                                      | age = PV volta                                                                                                                                   | age * <u>P15.28</u>                                                                       | 3                                 | 88%     | 0      |
| P15.29        | Auto<br>adjustment<br>interval of<br>Vmppt<br>upper/lower<br>limit | Wh Vm Wh auto spe adju upp P15 Max reference P15 This | ppt upper/lo<br>en it is not (<br>pmatically<br>cified by <u>F</u><br>ustment is t<br>er/lower I<br><u>5.30</u> . That is<br>kimum/Mini<br>erence volta | = 0.0, auto ower limit is in 0.0, Vmppt upp adjusted at 215.29. The c he actual PV v imit adjustm s: mum referenc ige = (Actual F omatically upo | valid. per/lower lim an inter center after roltage, and ent range e Max./Min. V voltage ± | it is<br>rval<br>the<br>the<br>is | 0.0s    | 0      |

| Function code | Name                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default           | Modify |
|---------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| P15.30        | Auto<br>adjustment<br>range of<br>Vmppt<br>upper/lower<br>limit | 5.0–100.0V<br>Range in which Vmppt upper/lower limit can<br>be automatically adjusted.                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.0V             | 0      |
| P15.31        | Vmppt max.<br>value                                             | P15.27-6553.5V During the max. power tracking, the upper limit of the solar panel reference voltage will not exceed the value of P15.31. The factory value depends on the model. By default, the value for the -4 models is 750V and the value for other models is 400V.                                                                                                                                                                                                                                            | Model<br>depended | 0      |
| P15.32        | PV input and power frequency input selection                    | O: Automatic mode  1: Hybrid power supply mode  2: PV input mode  If P15.32 is set to 0, the system switches between PV input and power frequency input according to the detected PV voltage and switching threshold.  If P15.32 is set to 1, the system switches to power frequency input when it detects successful AC power connection; otherwise, it switches to PV input.  If P15.32 is set to 2, the system forcibly switches to PV input.  Note: P15.32 is invalid when terminal input function 42 is valid. |                   | 0      |
| P15.33        | Threshold for switching to power frequency input                | 0.0V-P15.34  If PV voltage is lower than the threshold or the light is weak, it can switch to power frequency input through the relay output. If the value is 0, it is invalid. For inverters without boost modules, the switching voltage is determined by the external voltage detection circuit. For inverters with boost modules, the switching voltage is 70V.                                                                                                                                                 |                   | 0      |

| Function code | Name                                              | Description                                                                                                                                                                                                                                                                                                   | Default | Modify |
|---------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P15.34        | Threshold for switching to PV input               | P15.33–400.0V  If PV voltage is greater than the threshold, the system can switch to PV input through relay output with the weak-light wake-up delay P15.24. To avoid frequent switching, P15.34 shall be greater than P15.33. When P15.34 is set to 0.0, it is invalid.  The default value depends on model. | 100.0V  | 0      |
| P15.35        | Rated pump<br>flow                                | The pump flow is $\mathcal{Q}_N$ when the pump runs at the rated frequency and lift. Unit: cubic meter/hour.                                                                                                                                                                                                  | 0.0     | 0      |
| P15.36        | Rated pump<br>lift                                | The pump lift is $\ H_N \ $ when the pump runs at the rated frequency and flow. Unit: meter                                                                                                                                                                                                                   | 0.0     | 0      |
| P15.37        | Voltage<br>setting at PV<br>undervoltage<br>point | When the PV voltage is less than the value of this parameter, the system reports the PV undervoltage fault.  The factory value depends on the model.    Wodel                                                                                                                                                 | 70.0    | 0      |
| P15.38        | Output<br>frequency<br>selection                  | In PV mode, this parameter is used to select whether the system prioritizes PID constant pressure water supply or analog frequency setting. 0: MPPT priority 1: PID constant pressure supply priority 2: Set frequency priority                                                                               | 0       | 0      |

| Function code | Name                    | Description                                                                                                                                                                                                                  | Default | Modify |
|---------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                         | Potentiometer usage: P15.38=2, P00.06=1 UP/DN keypad usage: P15.38=2, use the UP/DN key on the LED keypad to adjust the frequency. UP/DN terminal usage: P15.38=2, P05.01=47/48, jog the S terminal to adjust the frequency. |         |        |
| P15.40        | Enable PQ curve fitting | 0: Disable 1: Enable Setting range: 0–1 When P15.40=1, the flow calculation uses the point between P15.41 and P15.50 for PQ curve fitting calculation, which is more accurate.                                               | 0       | 0      |
| P15.41        | PQ curve power point 1  | Corresponding power point when the input power of water pump is at the first point of PQ curve.  Setting range: 0.0–1000.0kW                                                                                                 | 0.0kW   | ©      |
| P15.42        | PQ curve power point 2  | Corresponding power point when the input power of water pump is at the second point of PQ curve.  Setting range: 0.0–1000.0kW                                                                                                | 0.0kW   | 0      |
| P15.43        | PQ curve power point 3  | Corresponding power point when the input power of water pump is at the third point of PQ curve. Setting range: 0.0–1000.0kW                                                                                                  | 0.0kW   | 0      |
| P15.44        | PQ curve power point 4  | Corresponding power point when the input power of water pump is at the fourth point of PQ curve. Setting range: 0.0–1000.0kW                                                                                                 | 0.0kW   | 0      |
| P15.45        | PQ curve power point 5  | Corresponding power point when the input power of water pump is at the fifth point of PQ curve. Setting range: 0.0–1000.0kW                                                                                                  | 0.0 kW  | 0      |
| P15.46        | PQ curve flow point 1   | Corresponding flow point when the flow of water pump is at the first point of PQ curve.                                                                                                                                      | 0.0m³/h | 0      |

| Function code | Name                                                           | Description                                                                                                                                                                        | Default           | Modify |
|---------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
|               |                                                                | Setting range: 0.0-1000.0m³/ h                                                                                                                                                     |                   |        |
| P15.47        | PQ curve flow point 2                                          | Corresponding flow point when the flow of water pump is at the second point of PQ curve.  Setting range: 0.0–1000.0m³/ h                                                           | 0.0m³/h           | 0      |
| P15.48        | PQ curve flow point 3                                          | Corresponding flow point when the flow of water pump is at the third point of PQ curve.  Setting range: 0.0–1000.0m³/ h                                                            | 0.0m³/h           | 0      |
| P15.49        | PQ curve flow point 4                                          | Corresponding flow point when the flow of water pump is at the fourth point of PQ curve.  Setting range: 0.0–1000.0m³/ h                                                           | 0.0m³/h           | 0      |
| P15.50        | PQ curve flow point 5                                          | Corresponding flow point when the flow of water pump is at the fifth point of PQ curve. Setting range: 0.0–1000.0m³/ h                                                             | 0.0m³/h           | 0      |
| P15.51        | Water pump efficiency                                          | The function code indicates the overall efficiency of water pump Setting range: 0–100%                                                                                             | 80%               | 0      |
| P15.55        | Hybrid power<br>voltage<br>suppression                         | In hybrid power supply mode, this parameter is used to suppress the bus voltage when AC power supply is disconnected.  Setting range: 0.0–800.0V -2 model: 240.0V -4 model: 460.0V | Model<br>depended | 0      |
| P15.56        | Frequency<br>fine-tuning<br>saving<br>through the<br>UP/DN key | This parameter is used to set whether frequency adjustments made through the UP/DN key are saved.  0: Not saved  1: Saved                                                          | 0                 | 0      |
| P15.57        | Frequency<br>fine-tuning<br>through the<br>UP/DN key           | Setting range: 0.00–10.00Hz                                                                                                                                                        | 1.00Hz            | 0      |
| P15.60        | Weak-light wake-up                                             | 0: Previous method 1: New method                                                                                                                                                   | 0                 | 0      |

| Function code | Name                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Default | Modify |
|---------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               | mode                                | Note: If this parameter is set to 0, use the fixed interval (P15.24) for restart. If it is set to 1, use the new method: non-fixed intervals (P15.61–P15.63) for restart.                                                                                                                                                                                                                                                                                                                                                                                          |         |        |
| P15.61        | Weak-light<br>wake-up<br>delay 1    | Setting range: 0–3600s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300s    | 0      |
| P15.62        | Weak-light<br>wake-up<br>delay 2    | Setting range: 0–3600s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 600s    | 0      |
| P15.63        | Weak-light<br>wake-up<br>delay 3    | Setting range: 0–3600s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1200s   | 0      |
| P15.64        | Weak-light fault detection time     | Setting range: 0–3600s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7200s   | 0      |
| P15.65        | Max. weak-<br>light fault<br>count  | Setting range: 0–10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | 0      |
| P15.66        | Weak-light<br>solution<br>selection | Setting range: 0x000–0x224 Ones place (light sensor selection): 0: None 1: Al1 2: Al2 3: Al3 4: 485 (reserved) Tens place (sleep selection): 0: Based on PV voltage 1: Based on weak-light sleep point 2: Based on PV voltage or weak-light sleep point Hundreds place (wake-up selection): 0: Based on PV voltage 1: Based on PV voltage or weak-light wake-up point Note: All weak-light wake-ups undergo delays set by P15.24/P15.61–P15.63. | 0x000   | 0      |

| Function code | Name                     | Description | Default | Modify |
|---------------|--------------------------|-------------|---------|--------|
| P15.67        | Weak-light sleep point   | 0%-P15.68   | 20%     | 0      |
| P15.68        | Weak-light wake-up point | P15.67–100% | 30%     | 0      |

#### P17 group Status viewing

| <u> </u>      | g. oup otation from ing |                                                                                                                               |         |        |  |  |
|---------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------|--------|--|--|
| Function code | Name                    | Description                                                                                                                   | Default | Modify |  |  |
| P17.38        | Current of the          | It is the current of the main winding when applying capacitance-removing to control the single phase motor. 0.00–100.00A      |         | •      |  |  |
| P17.39        | ('urrent of the         | It is the current of the secondary winding when applying capacitance-removing to control the single phase motor. 0.00–100.00A | 0.00A   | •      |  |  |

#### P18 group Status viewing functions special for solar inverters

| Function code | Name                                      | Description                                                                                                                                       | Default | Modify |
|---------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P18.00        | PV reference voltage                      | MPPT is implemented at the inverter side. This value is determined at the inverter side.                                                          | 0.0V    | •      |
| P18.01        | Actual PV voltage                         | It is transferred from the boost module or equal to the bus voltage.                                                                              | 0.0V    | •      |
| P18.02        | MPPT min.<br>reference<br>voltage display | The value displays the mini. voltage reference during max. power tracking. It equals the solar cell panel open-circuit voltage multiplied P15.26. | 0.0V    | •      |
| P18.04        | Present inductive current                 | It is transferred from the boost module.<br>This function code is valid only in AC<br>mode and invalid in PV mode.                                | 0.0A    | •      |
| P18.08        | Output power                              | 0.00-655.35kW                                                                                                                                     | 0.0kW   | •      |
| P18.09        | Previous PV voltage                       | 0.00-655.35kW                                                                                                                                     | 0.0V    | •      |
| P18.10        | Device power                              | 0x00-0x11                                                                                                                                         | 0x00    | •      |

| Function code | Name                               | Description                                                                                                                                                                                      | Default | Modify |
|---------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               | supply display                     | LED ones: 0: PV power supply 1: AC grid power supply LED tens: 0: Detect that the system is configured with the boost module. 1: Detect that the system is not configured with the boost module. |         |        |
| P18.11        | Actual pump flow                   | $Q = Q_N * f / f_N$ Unit: m³/h                                                                                                                                                                   | 0.0m³/h | •      |
| P18.12        | Actual pump lift                   | $H = 0.9H_N * (f / f_N)^2$ Unit: m                                                                                                                                                               | 0.0m    | •      |
| P18.13        | High-order bits in total pump flow | Used to display the 16 high-order bits of the total pump flow. Unit: m³                                                                                                                          | 0m³     | •      |
| P18.14        | Low-order bits in total pump flow  | Used to display the 16 low-order bits of the total pump flow. Unit: m³.  Total pump flow = P18.13*65535 + P18.14                                                                                 | 0.0m³   | •      |
| P18.15        | Reset total pump flow              | When it is set to 1, the total pump flow can be reset. P18.13 and P18.14 are cleared and then accumulated again. After the resetting succeeds, P18.15 is automatically changed to 0.             | 0       | 0      |

# P19 group Functions for voltage boost (inverter module communicates with boost module through RS422 communication)

| Function code | Name                     | Description                                 | Default | Modify |
|---------------|--------------------------|---------------------------------------------|---------|--------|
| P19.00        | Boost voltage<br>loop KP | 0.000-65.535                                | 0.500   | 0      |
| P19.01        | Boost voltage<br>loop KI | 0.000-65.535                                | 0.080   | 0      |
| P19.02        | Boost current<br>loop KP | 0.000-65.535                                | 0.010   | 0      |
| P19.03        | Boost current<br>loop KI | 0.000-65.535                                | 0.010   | 0      |
| P19.04        | Output current           | Output upper limit of mppt voltage loop PI, | 12.0A   | 0      |

| Function code | Name                                       | Description                                                                                                                                                                                                                                                               | Default | Modify |
|---------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               | upper limit of<br>boost voltage<br>loop PI | upper limit of the boost current loop<br>reference current.<br>P19.05–15.0A                                                                                                                                                                                               |         |        |
| P19.06        | Bus reference<br>voltage                   | This function code is used to set the reference voltage of bus voltage at PV input when the system is configured with the boost module. By default, the factory value for 220V models is 350V and the factory value for 380V models is 570V. Setting range: 300.0V–600.0V | 350.0V  | 0      |
| P19.07        | Boost voltage<br>loop KP1                  | If the difference between the bus reference voltage and actual bus voltage is greater than 20V, the boost voltage loop uses PI parameters of this group. Otherwise, the boost voltage loop uses PI parameters of the first group. Setting range: 0.000-65.535             | 0.500   | 0      |
| P19.08        | Boost voltage<br>loop KI1                  | If the difference between the bus reference voltage and actual bus voltage is greater than 20V, the boost voltage loop uses the PI parameters of this group. Otherwise, the boost voltage loop uses the PI parameters of the first group. Setting range: 0.000–65.535     | 0.080   | 0      |
| P19.09        | Boost starting voltage                     | 60.0–200.0V                                                                                                                                                                                                                                                               | 80.0V   | •      |
| P19.10        | Boost software version                     | Once being powered, the boost module sends its version information to the inverter module.                                                                                                                                                                                | 0.00    | •      |

#### Note:

- The duration from when the inverter starts to when it runs at the PI output frequency lower limit is determined by the ACC time.
- Delay time counting follows the rules if multiple fault conditions are met simultaneously:
   For example, if all fault conditions of weak light, full water, and underload are met simultaneously, the delay time for each fault is counted independently. When the delay

time of a fault is reached, the fault is reported. The delay time counting for the other two faults is kept. If the reported faults is resolved bu the conditions of the other two faults persist, the delay time counting of the other two faults continues. If a fault condition is not met during counting, the delay time of this fault is cleared.

# 7 Fault diagnosis and solution

Do as follows after the inverter encounters a fault:

- Check to ensure there is nothing wrong with the keypad. If not, please contact with the local INVT office.
- If there is nothing wrong, please check P07 and ensure the corresponding recorded fault parameters to confirm the real state when the current fault occurs by all parameters.
- 3. See the following table for detailed solution and check the corresponding abnormal state.
- 4. Eliminate the fault and ask for relative help.
- 5. Check to eliminate the fault and carry out fault reset to run the inverter.

**Note:** The numbers enclosed in square brackets such as [1], [2] and [3] in the Fault type column in the following table indicate the inverter fault type codes read through communication.

| Fault code | Fault type                                                                           | Possible cause                                                                                                                                                                                                                 | Solution                                                                                                                                                                                         |
|------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUt1       | [1] Inverter unit U-<br>phase protection<br>[2] Inverter unit V-<br>phase protection | <ul> <li>Acceleration is too fast.</li> <li>IGBT module is damaged.</li> <li>Misacts are caused by interference.</li> </ul>                                                                                                    | <ul> <li>Increase the ACC time.</li> <li>Replace the power unit.</li> <li>Check drive wires.</li> </ul>                                                                                          |
| OUt3       | [3] Inverter unit W-<br>phase protection                                             | connected.                                                                                                                                                                                                                     | <ul> <li>Check whether there is strong<br/>interference surrounding the<br/>peripheral device.</li> </ul>                                                                                        |
| OC1        | [4] Overcurrent during acceleration                                                  | Acceleration or deceleration is too fast.                                                                                                                                                                                      | <ul><li>Increase the ACC time.</li><li>Check the input power.</li></ul>                                                                                                                          |
| OC2        | [5] Overcurrent during deceleration                                                  | <ul> <li>The voltage of the grid is too low.</li> </ul>                                                                                                                                                                        | <ul> <li>Select the inverter with larger<br/>power.</li> </ul>                                                                                                                                   |
| OC3        | [6] Overcurrent<br>during constant<br>speed running                                  | ow.  The power of the inverter is too low.  The load transients or is abnormal.  There is to-ground short circuit or output phase loss.  There is strong external interference.  The overvoltage stall protection is disabled. | circuit (to-ground or inter-wire) in the load or the rotation is not smooth.  Check the output wiring.  Check whether there is strong interference.  Check the setting of related function codes |

| Fault code | Fault type                                          | Possible cause                                                                                                                                                                                   | Solution                                                                                                                                                                                             |  |  |  |  |
|------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|            |                                                     |                                                                                                                                                                                                  | is required to configure the corresponding output reactor and debug certain parameters.                                                                                                              |  |  |  |  |
| OV1        | [7] Overvoltage during acceleration                 | • The invest scales in                                                                                                                                                                           | Check the input power.     Check whether the loade                                                                                                                                                   |  |  |  |  |
| OV2        | [8] Overvoltage during deceleration                 | <ul><li>The input voltage is abnormal.</li><li>There is large energy</li></ul>                                                                                                                   | DEC time is too short or the inverter starts when the motor is                                                                                                                                       |  |  |  |  |
| OV3        | [9] Overvoltage<br>during constant<br>speed running | feedback.  No braking components.  Dynamic brake is disabled.                                                                                                                                    | rotating.  Install the braking components.  Check the setting of related function codes.                                                                                                             |  |  |  |  |
| UV         | [10] Bus<br>undervoltage                            | <ul> <li>The voltage of the grid is too low.</li> <li>Overvoltage stall protection is disabled.</li> </ul>                                                                                       | <ul> <li>Check the grid input power.</li> <li>Check the setting of relate.</li> </ul>                                                                                                                |  |  |  |  |
| OL1        | [11] Motor overload                                 | <ul> <li>The grid voltage is too low.</li> <li>The rated current of the motor is set incorrectly.</li> <li>Motor stall or load jumps violently.</li> </ul>                                       | Check the grid voltage.     Reset the rated current of the motor.     Check the load and adjust torque boost.                                                                                        |  |  |  |  |
| OL2        | [12] Inverter<br>overload                           | <ul> <li>Acceleration is too fast.</li> <li>The rotating motor is reset.</li> <li>The grid voltage is too low.</li> <li>The load is too heavy.</li> <li>The motor power is too small.</li> </ul> | <ul> <li>Increase the ACC time.</li> <li>Avoid the restarting after stop.</li> <li>Check the grid voltage.</li> <li>Select an inverter with larger power.</li> <li>Select a proper motor.</li> </ul> |  |  |  |  |
| SPI        | [13] Phase loss on<br>the input side                | <ul> <li>Phase loss or violent<br/>fluctuation occurred on input<br/>R, S, T.</li> </ul>                                                                                                         | <ul> <li>Check the input nower</li> </ul>                                                                                                                                                            |  |  |  |  |
| SPO        | [14] Phase loss on<br>output side                   | <ul> <li>Phase loss output occurs to<br/>U, V, W (or the three phases of<br/>the load are seriously<br/>asymmetrical)</li> </ul>                                                                 |                                                                                                                                                                                                      |  |  |  |  |
| OH1        | [15] Rectifier module overheating                   | ● Air duct jam or fan damage ob Dredge the vent du occurs. replace the fan.                                                                                                                      |                                                                                                                                                                                                      |  |  |  |  |
| OH2        | [16] Inverter module                                | Ambient temperature is too                                                                                                                                                                       | Lower the ambient                                                                                                                                                                                    |  |  |  |  |

| Fault code | Fault type                         | Possible cause                                                                                                                                                                                                                 | Solution                                                                                                                                                                                                                                 |  |  |
|------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            | overheat                           | high.  The time of overload running is too long.                                                                                                                                                                               | temperature.                                                                                                                                                                                                                             |  |  |
| EF         | [17] External fault                | • SI external fault input terminals action.                                                                                                                                                                                    | • Check the external device input.                                                                                                                                                                                                       |  |  |
| CE         | [18] RS485<br>communication fault  | communication wiring.  The communication address is incorrect.                                                                                                                                                                 | Set a proper baud rate.     Check the communication interface wiring.     Set a proper communication address.     Replace or change the wiring to enhance the anti-interference capability.                                              |  |  |
| ItE        | [19] Current<br>detection fault    | <ul> <li>The control board connector is in poor contact.</li> <li>Hall device is damaged.</li> <li>An exception occurs on the magnifying circuit.</li> </ul>                                                                   | Check the connector and replug. Replace the Hall device.                                                                                                                                                                                 |  |  |
| tE         | [20] Motor<br>autotuning fault     | The motor capacity does not match the inverter capacity.  Motor parameters are not set correctly.  The difference between the parameters obtained from autotuning and the standard parameters is great.  Autotuning timed out. | Change the inverter mode. Set the motor type and nameplate parameters correctly. Empty the motor load. Check the motor wiring and parameter settings. Check whether the upper limit frequency is higher than 2/3 of the rated frequency. |  |  |
| EEP        | [21] EEPROM operation fault        | <ul><li>Error in reading or writing control parameters.</li><li>EEPROM is damaged.</li></ul>                                                                                                                                   | <ul><li>Press STOP/RST for reset.</li><li>Change the main control board.</li></ul>                                                                                                                                                       |  |  |
| PIDE       | [22] PID feedback<br>disconnection | <ul> <li>PID feedback is disconnected.</li> <li>The PID feedback source disappears.</li> </ul>                                                                                                                                 | <ul> <li>Check the PID feedback signal wires.</li> <li>Check the PID feedback source.</li> </ul>                                                                                                                                         |  |  |

| Fault code | Fault type                              | Possible cause                                                                                                    | Solution                                                                                                                                                                                                                            |  |  |
|------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| END        | [24] Running time reached               | <ul> <li>The actual running time of<br/>the inverter is longer than the<br/>internal set running time.</li> </ul> | <ul> <li>Δck the cumplier to adjust the</li> </ul>                                                                                                                                                                                  |  |  |
| OL3        | [25] Electronic<br>overload             | ● The inverter reports overload alarm according to the setting.                                                   | Check the load and overload alarm threshold.                                                                                                                                                                                        |  |  |
| ETH1       | [32] To-ground<br>short-circuit fault 1 | <ul> <li>Inverter output is short connected to the ground.</li> </ul>                                             | <ul> <li>Check whether the motor<br/>wiring is proper.</li> </ul>                                                                                                                                                                   |  |  |
| ETH2       | [33] To-ground<br>short-circuit fault 2 | There is a fault in the current detection circuit.                                                                | <ul> <li>Replace the Hall device.</li> <li>Change the main control board.</li> </ul>                                                                                                                                                |  |  |
| dEu        | [34] Speed<br>deviation fault           | ● The load is too heavy or stalled.                                                                               | Check the load and increase the detection time if the load is normal.     Check whether control parameters are set correctly.                                                                                                       |  |  |
| STo        | [35] Mal-adjustment<br>fault            | not accurate.                                                                                                     | load is normal.                                                                                                                                                                                                                     |  |  |
| LL         | [36] Electronic<br>underload            | • The inverter reports underload alarm according to the setting.                                                  | Check the load and underload alarm threshold.                                                                                                                                                                                       |  |  |
| tSF        | [37] Hydraulic probe<br>damage          | Hydraulic probe damage.                                                                                           | Replace the hydraulic probe.                                                                                                                                                                                                        |  |  |
| PINV       | [38] PV reverse connection fault        | ● PV wiring is incorrect.                                                                                         | <ul> <li>Change the wiring direction of<br/>positive and negative terminals,<br/>and perform the wiring again.</li> </ul>                                                                                                           |  |  |
| PVOC       | [39] PV overcurrent                     | too low.  The load transients or is abnormal.                                                                     | <ul> <li>Increase the ACC/DCC time.</li> <li>Select the inverter with larger power.</li> <li>Check if the load is short circuited (to-ground short circuit or line-to-line short circuit) or the rotation is not smooth.</li> </ul> |  |  |

| Fault code | Fault type                                                  | Possible cause                                                                                                                                                                    | Solution                                                                                                                                                                                                |
|------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PVOV       | [40] PV overvoltage                                         | <ul> <li>The solar cell panel input voltage is too high.</li> <li>Model -4 is set as another model.</li> </ul>                                                                    | <ul> <li>Reduce the number of solar<br/>cell panels in series connection.</li> <li>Check and reset the model.</li> </ul>                                                                                |
| PVLV       | [41] PV<br>undervoltage                                     | <ul> <li>The power of the solar cell panels in series connection is too low or it is cloudy and rainy weather.</li> <li>The starting current of the motor is too high.</li> </ul> | cell panels or perform the test in the normal sunlight.                                                                                                                                                 |
| E-422      | [42] Fault on 422<br>communication with<br>the boost module | Communication cables are in poor contact.                                                                                                                                         | Check four communication<br>cables of 422 communication,<br>ensuring that they are<br>connected reliably.                                                                                               |
| OV         | [43] Bus<br>overvoltage<br>detected on the<br>boost side    | ● The sunlight changes sharply.                                                                                                                                                   | ● Adjust the boost PI parameters, and enlarge the values of P19.07 and P19.08.                                                                                                                          |
| A-LS       | Weak-light alarm                                            | <ul> <li>The sunlight is weak or the<br/>solar panel configuration is<br/>insufficient.</li> </ul>                                                                                | <ul> <li>The device will automatically<br/>run when the light is sufficient.</li> <li>Check whether the solar<br/>panel configuration is sufficient.</li> </ul>                                         |
| A-LL       | Underload alarm                                             | • The pumping pool has no water.                                                                                                                                                  | Check the pumping pool.                                                                                                                                                                                 |
| A-tF       | Full-water alarm                                            | ● The pumping pool is full.                                                                                                                                                       | ● If you have configured the full-<br>water alarm function, the device<br>automatically stops when the<br>alarm elapsed a period of time.<br>Otherwise, check whether<br>terminals are wired correctly. |
| A-tL       | Empty-water alarm                                           | • The pumping pool has no<br>water.                                                                                                                                               | ● If you have configured the empty-water alarm function, the device automatically stops when the alarm elapsed a period of time. Otherwise, check whether terminals are wired correctly.                |

# 8 Communication protocol

# 8.1 Brief instruction to Modbus protocol

Modbus protocol is a software protocol and common language which is applied in the electrical controller. With this protocol, the controller can communicate with other devices via network (the channel of signal transmission or the physical layer, such as RS485). And with this industrial standard, the controlling devices of different manufacturers can be connected to an industrial network for the convenient of being monitored.

There are two transmission modes for Modbus protocol: ASCII mode and RTU (Remote Terminal Units) mode. On one Modbus network, all devices should select same transmission mode and their basic parameters, such as baud rate, digital bit, check bit, and stopping bit should have no difference.

Modbus network is a controlling network with single-master and multiple slaves, which means that there is only one device performs as the master and the others are the slaves on one Modbus network. The master means the device which has active talking right to send message to Modbus network for the controlling and inquiring to other devices. The slave means the passive device which sends data message to the Modbus network only after receiving the controlling or inquiring message (command) form the master (response). After the master sends message, there is a period of time left for the controlled or inquired slaves to response, which ensure there is only one slave sends message to the master at a time for the avoidance of singles impact.

Generally, the user can set PC, PLC, IPC and HMI as the masters to realize central control. Setting certain device as the master is a promise other than setting by a bottom or a switch or the device has a special message format. For example, when the upper monitor is running, if the operator clicks sending command bottom, the upper monitor can send command message actively even it cannot receive the message from other devices. In this case, the upper monitor is the master. And if the designer makes the inverter send the data only after receiving the command, then the inverter is the slave.

The master can communicate with any single slave or with all slaves. For the single-visiting command, the slave should feedback a response message; for the broadcasting message from the master, the slave does not need to feedback the response message.

# 8.2 Application of the inverter

The inverter uses the Modbus RTU mode and the physical layer is 2-wire RS485.

### 8.2.1 2-wire RS485

2-wire RS485 interfaces works in half-duplex mode and send data signals in the differential transmission way, which is also referred to as balanced transmission. An RS485 interface uses a twisted pair, in which one wire is defined as A (+), and the other B (-). Generally, if the positive

electrical level between the transmission drives A and B ranges from +2 V to +6 V, the logic is "1"; and if it ranges from -2 V to -6 V, the logic is "0".

On the inverter terminal block, the 485+ terminal corresponds to A, and 485- corresponds to B.

The communication baud rate (P14.01) indicates the number of bits sent in a second, and the unit is bit/s (bps). A higher baud rate indicates faster transmission and poorer anti-interference capability. When a twisted pair of 0.56mm (24 AWG) is used, the maximum transmission distance varies according to the baud rate, as described in the following table.

| Baud<br>rate | Max.<br>transmission<br>distance | Baud<br>rate | Max.<br>transmission<br>distance | Baud<br>rate | Max.<br>transmission<br>distance | Baud<br>rate | Max.<br>transmission<br>distance |
|--------------|----------------------------------|--------------|----------------------------------|--------------|----------------------------------|--------------|----------------------------------|
| 2400<br>bps  | 1800m                            | 4800<br>bps  | 1200m                            | 9600<br>bps  | 800m                             | 19200<br>bps | 600m                             |

When RS485 interfaces are used for long-distance communication, it is recommended that you use shielded cables, and use the shielding layer as the ground wires.

When there are fewer devices and the transmission distance is short, the whole network works well without terminal load resistors. The performance, however, degrades as the distance increases. Therefore, it is recommended that you use a  $120\Omega$  terminal resistor when the transmission distance is long.

### 8.2.1.1 When one inverter is used

Figure 8-1 is the Modbus wiring diagram for the network with one inverter and PC. Generally, PCs do not provide RS485 interfaces, and therefore you need to convert an RS232 or USB interface of a PC to an RS485 interface through a converter. Then, connect end A of the RS485 interface to the 485+ port on the terminal block of the inverter, and connect end B to the 485-port. It is recommended that you use shielded twisted pairs. When an RS232-RS485 converter is used, the cable used to connect the RS232 interface of the PC and the converter cannot be longer than 15 m. Use a short cable when possible. It is recommended that you insert the converter directly into the PC. Similarly, when a USB-RS485 converter is used, use a short cable when possible.

When the wiring is completed, select the correct port (for example, COM1 to connect to the RS232-RS485 converter) for the upper computer of the PC, and keep the settings of basic parameters such as communication baud rate and data check bit consistent with those of the inverter.

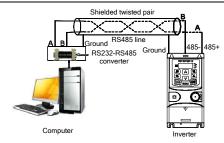



Figure 8-1 RS485 wiring diagram for the network with one inverter

### 8.2.1.2 When multiple inverters are used

In the network with multiple inverters, chrysanthemum connection and star connection are commonly used. According to the requirements of the RS485 industrial bus standards, all the devices need to be connected in chrysanthemum mode with one 120  $\Omega$  terminal resistor on each end, as shown in Figure 8-2.

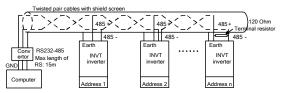



Figure 8-2 Practical application diagram of chrysanthemum connection

Figure 8-3 shows the start connection diagram. When this connection mode is adopted, the two devices that are farthest away from each other on the line must be connected with a terminal resistor (in this figure, the two devices are devices 1# and 15#).

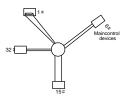



Figure 8-3 Star connection

Use shielded cables, if possible, in multi-inverter connection. The baud rates, data bit check settings, and other basic parameters of all the devices on the RS485 line must be set consistently, and addresses cannot be repeated.

### 8.2.2 RTU mode

### 8.2.2.1 RTU communication frame structure

When a controller is set to use the RTU communication mode on a Modbus network, every byte (8 bits) in the message includes 2 hexadecimal characters (each includes 4 bits). Compared with the ASCII mode, the RTU mode can transmit more data with the same baud rate.

### Code system

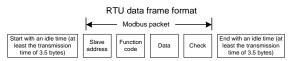
- 1 start bit
- 7 or 8 data bits; the minimum valid bit is transmitted first. Each frame domain of 8 bits includes 2 hexadecimal characters (0–9, A–F).
- 1 odd/even check bit; this bit is not provided if no check is needed.
- 1 stop bit (with check performed), or 2 bits (without check)

### Error detection domain

Cyclic redundancy check (CRC)

The following table describes the data format.

11-bit character frame (Bits 1 to 8 are data bits)


10-bit character frame (Bits 1 to 7 are data bits)

Start bit BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 Check bit Stop bit

In a character frame, only the data bits carry information. The start bit, check bit, and stop bit are used to facilitate the transmission of the data bits to the destination device. In practical applications, you must set the data bits, parity check bits, and stop bits consistently.

In RTU mode, the transmission of a new frame always starts from an idle time (the transmission time of 3.5 bytes). On a network where the transmission rate is calculated based on the baud rate, the transmission time of 3.5 bytes can be easily obtained. After the idle time ends, the data domains are transmitted in the following sequence: slave address, operation command code, data, and CRC check character. Each byte transmitted in each domain includes 2 hexadecimal characters (0–9, A–F). The network devices always monitor the communication bus. After receiving the first domain (address information), each network device identifies the byte. After the last byte is transmitted, a similar transmission interval (the transmission time of 3.5 bytes) is used to indicate that the transmission of the frame ends. Then, the transmission

of a new frame starts.



The information of a frame must be transmitted in a continuous data flow. If there is an interval greater than the transmission time of 1.5 bytes before the transmission of the entire frame is complete, the receiving device deletes the incomplete information, and mistakes the subsequent byte for the address domain of a new frame. Similarly, if the transmission interval between two frames is shorter than the transmission time of 3.5 bytes, the receiving device mistakes it for the data of the last frame. The CRC check value is incorrect due to the disorder of the frames, and thus a communication fault occurs.

The following table describes the standard structure of an RTU frame.

| START (frame header)  | T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)          |
|-----------------------|-----------------------------------------------------------------|
| ADDR (slave address   | Communication address: 0-247 (in decimal system) (0 indicates   |
| domain)               | the broadcast address)                                          |
| CMD (function demain) | 03H: read slave parameters                                      |
| CMD (function domain) | 06H: write slave parameters                                     |
| Data domain           |                                                                 |
| DATA (N-1)            | Data of 2*N bytes, main content of the communication as well as |
|                       | the core of data exchanging                                     |
| DATA (0)              |                                                                 |
| LSB of CRC CHK        | Detection and the ODO (40 kits)                                 |
| MSB of CRC CHK        | Detection value: CRC (16 bits)                                  |
| END (frame tail)      | T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)          |

### 8.2.2.2 RTU communication frame error check modes

During the transmission of data, errors may occur due to various factors (such as electromagnetic interference). For example, if the sending message is a logic "1", A-B potential difference on RS485 should be 6V, but in reality, it may be -6V because of electromagnetic interference, and then the other devices take the sent message as logic "0". Without error check, the data receiving device cannot identify data errors and may make a wrong response. The wrong response may cause severe problems. Therefore, the data must be checked.

The check is implemented as follows: The transmitter calculates the to-be-transmitted data based on a specific algorithm to obtain a result, adds the result to the rear of the message, and transmits them together. After receiving the message, the receiver calculates the data based on the same algorithm to obtain a result, and compares the result with that transmitted by the

transmitter. If the results are the same, the message is correct. Otherwise, the message is considered wrong.

The error check of a frame includes two parts, namely, bit check on individual bytes (that is, odd/even check using the check bit in the character frame), and whole data check (CRC check).

# Bit check on individual bytes (odd/even check)

You can select the bit check mode as required, or you can choose not to perform the check, which will affect the check bit setting of each byte.

Definition of even check: Before the data is transmitted, an even check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is even, the check bit is set to "0"; and if it is odd, the check bit is set to "1".

Definition of odd check: Before the data is transmitted, an odd check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is odd, the check bit is set to "0"; and if it is even, the check bit is set to "1".

For example, the data bits to be transmitted are "11001110", including five "1". If the even check is applied, the even check bit is set to "1"; and if the odd check is applied, the odd check bit is set to "0". During the transmission of the data, the odd/even check bit is calculated and placed in the check bit of the frame. The receiving device performs the odd/even check after receiving the data. If it finds that the odd/even parity of the data is inconsistent with the preset information, it determines that a communication error occurs.

# Cyclical Redundancy Check (CRC) method

A frame in the RTU format includes an error detection domain based on the CRC calculation. The CRC domain checks all the content of the frame. The CRC domain consists of two bytes, including 16 binary bits. It is calculated by the transmitter and added to the frame. The receiver calculates the CRC of the received frame, and compares the result with the value in the received CRC domain. If the two CRC values are not equal to each other, errors occur in the transmission.

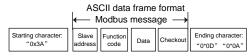
During CRC, 0xFFFF is stored first, and then a process is invoked to process a minimum of 6 contiguous bytes in the frame based on the content in the current register. CRC is valid only for the 8-bit data in each character. It is invalid for the start, stop, and check bits.

During the generation of the CRC values, the "exclusive or" (XOR) operation is performed on the each 8-bit character and the content in the register. The result is placed in the bits from the low-order bit to the high-order bit, and 0 is placed in the high-order bit. Then, the low-order bit is detected. If the low-order bit is 1, the XOR operation is performed on the current value in the register and the preset value. If low-order bit is 0, no operation is performed. This process is repeated 8 times. After the last bit (8th bit) is detected and processed, the XOR operation is performed on the next 8-bit byte and the current content in the register. The final values in the register are the CRC values obtained after operations are performed on all the bytes in the

frame.

The calculation adopts the international standard CRC check rule. You can refer to the related standard CRC algorithm to compile the CRC calculation program as required.

The following example is a simple CRC calculation function for your reference (using the C programming language):


In the ladder logic, CKSM uses the table look-up method to calculate the CRC value according to the content in the frame. The program of this method is simple, and the calculation is fast, but the ROM space occupied is large. Use this program with caution in scenarios where there are space occupation requirements on programs.

### 8.2.3 ASCII mode

| Name   |                                                                                             | Definition                                                                                                                                                                                   |      |      |      |      |      |      |      |      |
|--------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|
|        | С                                                                                           | Communication protocol belongs to hexadecimal system. The meaning of message character in ASCII: "0""9", "A"" F", each hex is represented by the ASCII message corresponds to the character. |      |      |      |      |      |      |      |      |
| Coding |                                                                                             | Character                                                                                                                                                                                    | "0"  | "1"  | "2"  | "3"  | "4"  | "5"  | "6"  | "7"  |
| system |                                                                                             | ASCII CODE                                                                                                                                                                                   | 0x30 | 0x31 | 0x32 | 0x33 | 0x34 | 0x35 | 0x36 | 0x37 |
|        |                                                                                             | Character                                                                                                                                                                                    | "8"  | "9"  | "A"  | "B"  | "C"  | "D"  | "E"  | "F"  |
|        |                                                                                             | ASCII CODE                                                                                                                                                                                   | 0x38 | 0x39 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 |
| Data   | Starting bit, 7/8 data bit, check bit and stop bit. The data formats are listed as follows. |                                                                                                                                                                                              |      |      |      |      |      |      |      |      |
| format | 1                                                                                           | 1-bit character fr                                                                                                                                                                           | ame: |      |      |      |      |      |      |      |

| Name |                         | Definition   |          |      |      |      |     |       |       |     |          |              |          |  |
|------|-------------------------|--------------|----------|------|------|------|-----|-------|-------|-----|----------|--------------|----------|--|
|      |                         | Starting bit | BIT<br>1 | BIT2 | BIT3 | BIT4 | ВІТ | 5 BIT | 6 BIT | 7   | BIT<br>8 | Check bit    | Stop bit |  |
|      | 10-bit character frame: |              |          |      |      |      |     |       |       | _   |          |              |          |  |
|      |                         | Starting bit | BIT1     | BIT2 | BIT  | 3 BI | T4  | BIT5  | віте  | 6 E | BIT7     | Check<br>bit | Stop bit |  |

In ASCII mode, the frame header is ":" ("0\*3A"), frame end is "CRLF" ("0\*0D" "0\*0A") by default. In ASCII mode, all the data bytes, except for the frame header and frame end, are transmitted in ASCII code mode, in which four MSB groups will be sent out first and then, four LSB groups will be sent out. In ASCII mode, the data length is 8 bit. As for "A"—"F", its capital letters is adopted for ASCII code. The data now adopts LRC checkout which covers slave address to data information. The checksum equals to the complement of the character sum of all the participated checkout data.



### Standard structure of ASCII frame:

| START       | ":" (0x3A)                                                       |
|-------------|------------------------------------------------------------------|
| Address Hi  | Communication address:                                           |
| Address Lo  | 8-bit address is formed by the combination of two ASCII codes    |
| Function Hi | Function code:                                                   |
| Function Lo | 8-bit address is formed by the combination of two ASCII codes    |
| DATA (N-1)  | Data content:                                                    |
|             | nx8-bit data content is formed by combination of 2n (n≤16) ASCII |
| DATA (0)    | codes                                                            |
| LRC CHK Hi  | LRC check code:                                                  |
| LRC CHK Lo  | 8-bit check code is formed by the combination of two ASCII       |
| LRC CHK LO  | codes.                                                           |
| END Hi      | End character:                                                   |
| END Lo      | END Hi=CR (0x0D), END Lo=LF (0x0A)                               |

# 8.2.3.1 ASCII mode check (LRC Check)

Check code (LRC Check) is the value combined of address and data content result. For instance, the check code of above 2.2.2 communication message is: 0x02+0x06+0x00+0x08+0x13+0x88=0xAB, then take the compliment of 2=0x55.

The following example is a simple LRC calculation function for your reference (using the C

### programming language):

```
Static unsigned char
LRC(auchMsg,usDataLen)
unsigned char *auchMsg;
unsigned short usDataLen;
{
  unsigned char uchLRC=0;
  while(usDataLen--)
  uchLRC+=*auchMsg++;
  return((unsigned char)(-((char)uchLRC)));
}
```

### 8.3 Command code and communication data

### 8.3.1 RTU mode

# 8.3.1.1 Command code 03H (corresponding to binary 0000 0011), read N words (Word) (N≤16)

Command code 03H means that if the master read data from the inverter, the reading number depends on the "data number" in the command code. The max continuous reading number is 16 and the parameter address should be continuous. The byte length of every data is 2 (one word). The following command format is illustrated by hex (a number with "H" means hex) and one hex occupies one byte.

The command code is used to read the working state of the inverter.

For example, read continuous 2 data content from 0004H from the inverter with the address of 01H (read the content of data address of 0004H and 0005H), the frame structure is as follows.

| RTU master               |                      | RTU slave response (sent from the inverter to the master) |                     |  |  |
|--------------------------|----------------------|-----------------------------------------------------------|---------------------|--|--|
| (sent from the mas       | ter to the inverter) | (sent from the inve                                       | rter to the master) |  |  |
| START                    | T1-T2-T3-T4          | START                                                     | T1-T2-T3-T4         |  |  |
| ADDR                     | 01H                  | ADDR                                                      | 01H                 |  |  |
| CMD                      | 03H                  | CMD                                                       | 03H                 |  |  |
|                          |                      | Byte number                                               | 04H                 |  |  |
| MSB of the start         | 00H                  | MSB of data in 0004H                                      | 13H                 |  |  |
| address                  |                      |                                                           |                     |  |  |
| LSB of the start address | 04H                  | LSB of data in 0004H                                      | 88H                 |  |  |
| MSB of data number       | 00H                  | MSB of data in 0005H                                      | H00                 |  |  |

| RTU master                             | command | RTU slave                              | response    |
|----------------------------------------|---------|----------------------------------------|-------------|
| (sent from the master to the inverter) |         | (sent from the inverter to the master) |             |
| LSB of data number 02H                 |         | LSB of data in 0005H                   | 00H         |
| LSB of CRC                             | 85H     | LSB of CRC CHK                         | 7EH         |
| MSB of CRC                             | CAH     | LSB of CRC CHK                         | 9DH         |
| END                                    |         |                                        | T1-T2-T3-T4 |

T1-T2-T3-T4 between START and END is to provide at least the time of 3.5 bytes as the leisure time and distinguish two messages for the avoidance of taking two messages as one message.

ADDR = 01H means the command message is sent to the inverter with the address of 01H and ADDR occupies one byte

CMD=03H means the command message is sent to read data from the inverter and CMD occupies one byte

"Start address" means reading data from the address and it occupies 2 bytes with the fact that the MSB is in the front and the LSB is in the behind.

"Data number" means the reading data number with the unit of word. If the "start address" is 0004H and the "data number" is 0002H, the data of 0004H and 0005H will be read.

CRC occupies 2 bytes with the fact that the LSB is in the front and the MSB is in the behind.

The meaning of the response is that:

ADDR = 01H means the command message is transmitted by the inverter whose address is 01H. The ADDR information occupies one byte.

CMD=03H means the message is received from the inverter to the master for the response of reading command The CMD information occupies one byte.

"Byte number" means all byte number from the byte (excluding the byte) to CRC byte (excluding the byte). 04 means there are 4 byte of data from the "byte number" to "LSB of CRC CHK", which are "MSB of data in 0004H", "LSB of data in 0004H", "MSB of data in 0005H" and "LSB of data in 0005H".

There are 2 bytes stored in one data with the fact that the MSB is in the front and the LSB is in the behind of the message, the data of data address 0004H is 1388H, and the data of data address 0005H is 0000H.

CRC occupies 2 bytes with the fact that the LSB is in the front and the MSB is in the behind.

### 8.3.1.2 Command code 06H (corresponding to binary 0000 0110), write a word

The command means that the master write data to the inverter and one command can write one data other than multiple dates. The effect is to change the working mode of the inverter.

For example, write 5000 (1388H) to 0004H from the inverter with the address of 02H, the frame structure is as follows.

| RTU maste                   |             | RTU slave response (sent from the inverter to the master) |             |
|-----------------------------|-------------|-----------------------------------------------------------|-------------|
| START                       | T1-T2-T3-T4 | START                                                     | T1-T2-T3-T4 |
| ADDR                        | 02H         | ADDR                                                      | 02H         |
| CMD                         | 06H         | CMD                                                       | 06H         |
| MSB of data writing address | 00H         | MSB of data writing address                               | 00H         |
| LSB of data writing address | 04H         | LSB of data writing address                               | 04H         |
| MSB of to-be-written data   | 13H         | MSB of to-be-written data                                 | 13H         |
| LSB of to-be-written data   | 88H         | LSB of to-be-written data                                 | 88H         |
| LSB of CRC CHK              | C5H         | LSB of CRC CHK                                            | C5H         |
| MSB of CRC CHK              | 6EH         | MSB of CRC CHK                                            | 6EH         |
| END T1-T2-T3-T4             |             | END                                                       | T1-T2-T3-T4 |

Note: Sections 8.3.1.1 and 8.3.1.2 mainly describe the command format.

## 8.3.1.3 Command code 10H, continuous writing

Command code 10H means that if the master writes data to the inverter, the data number depends on the "data number" in the command code. The max continuous reading number is 16.

For example, write 5000 (1388H) to 0004H of the inverter whose slave address is 02H and 50 (0032H) to 0005H, the frame structure is as follows.

The RTU request command is:

| START                       | T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes) |
|-----------------------------|--------------------------------------------------------|
| ADDR                        | 02H                                                    |
| CMD                         | 10H                                                    |
| MSB of data writing address | 00Н                                                    |
| LSB of data writing address | 04H                                                    |
| MSB of data quantity        | 00H                                                    |
| LSB of data quantity        | 02H                                                    |
| Byte number                 | 04H                                                    |
| MSB of data in 0004H        | 13H                                                    |
| LSB of data in 0004H        | 88H                                                    |

| MSB of data in 0005H | 00H                                                    |
|----------------------|--------------------------------------------------------|
| LSB of data in 0005H | 32H                                                    |
| LSB of CRC           | C5H                                                    |
| MSB of CRC           | 6EH                                                    |
| END                  | T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes) |

# The RTU response command is:

| START                       | T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes) |
|-----------------------------|--------------------------------------------------------|
| ADDR                        | 02H                                                    |
| CMD                         | 10H                                                    |
| MSB of data writing address | 00Н                                                    |
| LSB of data writing address | 04H                                                    |
| MSB of data quantity        | 00H                                                    |
| LSB of data quantity        | 02H                                                    |
| LSB of CRC                  | C5H                                                    |
| MSB of CRC                  | 6EH                                                    |
| END                         | T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes) |

### 8.3.2 ASCII mode

# 8.3.2.1 Command code: 03H (0000 0011), read N words (Word) (max. number for continuous reading is 16 words)

For instance: As for the inverter whose slave address is 01H, the starting address of internal storage is 0004, read two words continuously, the structure of this frame is listed as follows.

| ASCII maste (sent from the mas |     | ASCII slave response (sent from the inverter to the master) |     |
|--------------------------------|-----|-------------------------------------------------------------|-----|
| START                          | ":" | START                                                       | "." |
| 4000                           | "0" | 4000                                                        | "0" |
| ADDR                           | "1" | ADDR                                                        | "1" |
| CMD                            | "0" | OMB                                                         | "0" |
| CIVID                          | "3" | CMD                                                         | "3" |
| MSB of starting                | "0" | Distance and an                                             | "0" |
| address                        | "0" | Byte number                                                 | "4" |
| LSB of starting                | "0" | MSB of data address                                         | "1" |
| address                        | "4" | 0004H                                                       | "3" |
| MSB of data number             | "0" | LSB of data address                                         | "8" |
| INIOD OI data number           | "0" | 0004H                                                       | "8" |

| ASCII master command (sent from the master to the inverter |     | ASCII slave response (sent from the inverter to the master) |     |
|------------------------------------------------------------|-----|-------------------------------------------------------------|-----|
| LSB of data number                                         | "0" | MSB of data address                                         | "0" |
| LSB of data number                                         | "2" | 0005H                                                       | "0" |
| LRC CHK Hi                                                 | "F" | LSB of data address                                         | "0" |
| LRC CHK Lo                                                 | "6" | 0005H                                                       | "0" |
| END Hi                                                     | CR  | LRC CHK Hi                                                  | "5" |
| END Lo                                                     | LF  | LRC CHK Lo                                                  | "D" |
|                                                            |     | END Hi                                                      | CR  |
|                                                            |     | END Lo                                                      | LF  |

### 8.3.2.2 Command code: 06H (0000 0110), write a word (Word)

For instance: Write 5000 (1388H) to the 0004H address of the inverter whose slave address is 02H, then the structure of this frame is listed as follows.

| ASCII master command (sent from the master to the inverter) |     | ASCII slave response (sent from the inverter to the master) |     |
|-------------------------------------------------------------|-----|-------------------------------------------------------------|-----|
| START                                                       | ":" | START                                                       | ":" |
| ADDR                                                        | "0" | ADDR                                                        | "0" |
| ADDR                                                        | "2" | ADDR                                                        | "2" |
| CMD                                                         | "0" | CMD                                                         | "0" |
| CIVID                                                       | "6" | CIVID                                                       | "6" |
| MSB of data writing                                         | "0" | MSB of data writing                                         | "0" |
| address                                                     | "0" | address                                                     | "0" |
| LSB of data writing                                         | "0" | LSB of data writing                                         | "0" |
| address                                                     | "4" | address                                                     | "4" |
| MSB of to-be-written                                        | "1" | MSB of to-be-written                                        | "1" |
| data                                                        | "3" | data                                                        | "3" |
| LSB of to-be-written                                        | "8" | LSB of to-be-written                                        | "8" |
| data                                                        | "8" | data                                                        | "8" |
| LRC CHK Hi                                                  | "5" | LRC CHK Hi                                                  | "5" |
| LRC CHK Lo                                                  | "9" | LRC CHK Lo                                                  | "9" |
| END Hi                                                      | CR  | END Hi                                                      | CR  |
| END Lo                                                      | LF  | END Lo                                                      | LF  |

# 8.3.2.3 Command code: 10H, continuous writing

Command code 10H means the master write data to the inverter, the number of data being written is determined by the command "data number", the max. number of continuous writing is 16 words

For instance: Write 5000 (1388H) to 0004H of the inverter whose slave address is 02H, write

50 (0032H) to 0005H of the inverter whose slave address is 02H, then the structure of this frame is listed as follows.

| ASCII maste         |     | ASCII slave response (sent from the inverter to the master) |     |
|---------------------|-----|-------------------------------------------------------------|-----|
| (sent from the mass |     | <del></del>                                                 |     |
| START               | ":" | START                                                       | ":" |
| ADDR                | "0" | ADDR                                                        | "0" |
| ADDIN               | "2" | 7.551.                                                      | "2" |
| CMD                 | "1" | CMD                                                         | "1" |
| CIVID               | "0" | CIVID                                                       | "0" |
| MSB of starting     | "0" | MSB of starting                                             | "0" |
| address             | "0" | address                                                     | "0" |
| LSB of starting     | "0" | LSB of starting                                             | "0" |
| address             | "4" | address                                                     | "4" |
| MSB of data number  | "0" | MSB of data number                                          | "0" |
| MSB of data number  | "0" | IVISB OF data number                                        | "0" |
| LSB of data number  | "0" | LSB of data number                                          | "0" |
| LSB of data number  | "2" | LSB of data number                                          | "2" |
| Duta museban        | "0" | LRC CHK Hi                                                  | "E" |
| Byte number         | "4" | LRC CHK Lo                                                  | "8" |
| MSB of data to be   | "1" | END Hi                                                      | CR  |
| written to 0004H    | "3" | END Lo                                                      |     |
| LSB of data to be   |     |                                                             | LF  |
| written to 0004H    |     |                                                             |     |
| MSB of data to be   | "8" | /                                                           | 1   |
| written to 0005H    | "8" | /                                                           | 1   |
| MSB of data to be   | "0" | 1                                                           | 1   |
| written to 0004H    |     |                                                             |     |
| LSB of data to be   | "0" | 1                                                           | 1   |
| written to 0004H    |     |                                                             |     |
| MSB of data to be   | "3" | 1                                                           | 1   |
| written to 0005H    | "2" | 1                                                           | 1   |
| LRC CHK Hi          | "1" | 1                                                           | 1   |
| LRC CHK Lo          | "7" | 1                                                           | 1   |
| END Hi              | CR  | 1                                                           | 1   |
| END Lo              | LF  | 1                                                           | 1   |

# 8.4 Data address definition

This section describes the address definition of communication data. The addresses are used for controlling the running, obtaining the status information, and setting function parameters of

the inverter.

### 8.4.1 Function code address format rules

The parameter address occupies 2 bytes with the fact that the MSB is in the front and the LSB is in the behind. The range of MSB and LSB are: MSB—00-ffH; LSB—00-ffH. The MSB is the group number before the radix point of the function code and the LSB is the number after the radix point. But both the MSB and the LSB should be changed into hex. For example P05.05, the group number before the radix point of the function code is 05, then the MSB of the parameter is 05, the number after the radix point 05, then the LSB of the parameter is 05, then the LSB of the parameter oddress is 0505H and the parameter address of P11.01 is 0B01H.

| Function code | Name                                             | Description             | Default | Modify |
|---------------|--------------------------------------------------|-------------------------|---------|--------|
| P11.01        | Frequency<br>decrease at<br>sudden<br>power loss | 0: Disable<br>1: Enable | 0       | 0      |

### Note:

- P29 group is the factory parameter which cannot be read or changed. Some parameters cannot be changed when the inverter is in the running state and some parameters cannot be changed in any state. The setting range, unit and related instructions should be paid attention to when modifying the function code parameters.
- Besides, EEPROM is stocked frequently, which may shorten the usage time of EEPROM. For users, some functions are not necessary to be stocked on the communication mode. The needs can be met on by changing the value in RAM. Changing the MSB of the function code from 0 to 1 can also realize the function. For example, the function code P00.13 is not stocked into EEPROM. Only by changing the value in RAM can set the address to 8007H. This address can only be used in writing RAM other than reading. If it is used to read, it is an invalid address.

# 8.4.2 Description of other function addresses in Modbus

The master can operate on the parameters of the inverter as well as control the inverter, such as running or stopping and monitoring the working state of the inverter.

Below is the parameter list of other functions.

| Function instruction          | Address definition | Data meaning instruction | R/W characteristics |
|-------------------------------|--------------------|--------------------------|---------------------|
| 0                             |                    | 0001H: Forward running   |                     |
| Communication control command | 2000H              | 0002H: Reverse running   | R/W                 |
| control command               |                    | 0003H: Forward jogging   |                     |

| Function instruction | Address definition | Data meaning instruction                                       | R/W characteristics |
|----------------------|--------------------|----------------------------------------------------------------|---------------------|
| msuucuon             | delilililion       | 0004H: Reverse jogging                                         | Citaracteristics    |
|                      |                    | 0005H: Stop                                                    |                     |
|                      |                    | 0006H: Coast to stop                                           |                     |
|                      |                    | 0007H: Fault reset                                             |                     |
|                      |                    | 0008H: Jogging to stop                                         |                     |
|                      |                    | Communication setting frequency (0–                            |                     |
|                      | 2001H              | Fmax (unit: 0.01Hz))                                           | 544                 |
|                      | 000011             | PID reference, range (0-1000, 1000                             | R/W                 |
|                      | 2002H              | corresponds to100.0%)                                          |                     |
|                      | 2003H              | PID feedback, range (0-1000, 1000                              | R/W                 |
|                      | 200311             | corresponds to100.0%)                                          | FC/VV               |
|                      |                    | Torque setting value (-3000-3000, 1000                         |                     |
|                      | 2004H              | corresponds to the 100.0% of the rated                         | R/W                 |
|                      |                    | current of the motor)                                          |                     |
|                      | 2005H              | The upper limit frequency setting during                       | R/W                 |
|                      |                    | forward rotation (0-Fmax (unit: 0.01Hz))                       | 1000                |
|                      | 2006H              | The upper limit frequency setting during                       | R/W                 |
|                      |                    | reverse rotation (0–Fmax (unit: 0.01Hz))                       |                     |
|                      |                    | The upper limit torque of electromotion                        |                     |
| Address of the       | 2007H              | torque (0-3000, 1000 corresponds to the                        | R/W                 |
| communication        |                    | 100.0% of the rated current of the motor)                      |                     |
| setting value        | 000011             | The upper limit torque of braking torque                       | D.444               |
|                      | 2008H              | (0–3000, 1000 corresponds to the 100.0%                        | R/W                 |
|                      |                    | of the rated current of the motor)                             |                     |
|                      |                    | Special control command word Bit0–1: =00: motor 1 =01: motor 2 |                     |
|                      |                    | =10: motor 3 =11: motor 4                                      |                     |
|                      |                    | Bit2: =1 torque control prohibit                               |                     |
|                      |                    | =0: torque control prohibit invalid                            |                     |
|                      | 2009H              | Bit3: =1 power consumption clear                               | R/W                 |
|                      | 200011             | =0: no power consumption clear                                 |                     |
|                      |                    | Bit4: =1 pre-exciting                                          |                     |
|                      |                    | =0: pre-exciting prohibition                                   |                     |
|                      |                    | Bit5: =1 DC braking                                            |                     |
|                      |                    | =0: DC braking prohibition                                     |                     |
|                      | 200AH              | Virtual input terminal command, range: 0x000-0x1FF             | R/W                 |

| Function instruction             | Address definition | Data meaning in:                                                                                                                                                                                                                                                       | struction                                                                           | R/W<br>characteristics |
|----------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------|
|                                  | 200BH              | Virtual output terminal co                                                                                                                                                                                                                                             | ommand, range:                                                                      | R/W                    |
|                                  | 200CH              | Voltage setting value (<br>separation)<br>(0–1000, 1000 correspon<br>of the rated voltage of the                                                                                                                                                                       | ds to the 100.0%                                                                    | R/W                    |
|                                  | 200DH              | AO output setting 1<br>(-1000–1000, 1000 o<br>100.0%)                                                                                                                                                                                                                  | corresponds to                                                                      | R/W                    |
|                                  | 200EH              | AO output setting 2<br>(-1000–1000, 1000 o<br>100.0%)                                                                                                                                                                                                                  | corresponds to                                                                      | R/W                    |
| SW 1 of the inverter             | 2100H              | 0001H: Forward running<br>0002H: Forward running<br>0003H: Stop<br>0004H: Fault<br>0005H: POFF state                                                                                                                                                                   |                                                                                     | R                      |
| SW 1 of the inverter             | 2101H              | 0006H: Pre-exciting state Bit0: =0: bus voltage is no bus voltage is establ Bi1-2: =00: motor 1 =( =10: motor 3 = Bit3: =0: asynchronous =1: synchronous mo Bit4: =0: pre-alarm withou =1: overload pre-alar Bit5-Bit6: =00: keypad cc =01: terminal co =10: communica | ot established =1: iished 01: motor 2 :11: motor 4 motor tor ut overload rm control | R                      |
| Fault code of the inverter       | 2102H              | See the fault type instruc                                                                                                                                                                                                                                             | tion                                                                                | R                      |
| Identifying code of the inverter | 2103H              | GD100-PV0x0190                                                                                                                                                                                                                                                         |                                                                                     | R                      |
| Running frequency                | 3000H              | 0-Fmax (Unit: 0.01Hz)                                                                                                                                                                                                                                                  | Compatible with GD series,                                                          | R                      |
| Set frequency                    | 3001H              | 0-Fmax (Unit: 0.01Hz)                                                                                                                                                                                                                                                  | CHF100A, and                                                                        | R                      |
| Bus voltage                      | 3002H              | 0.0-2000.0V (Unit:                                                                                                                                                                                                                                                     | CHV100                                                                              | R                      |

| Function instruction                           | Address definition | Data meaning ins                  | struction     | R/W characteristics |
|------------------------------------------------|--------------------|-----------------------------------|---------------|---------------------|
|                                                |                    | 0.1V)                             | communication |                     |
| Output voltage                                 | 3003H              | 0-1200V (Unit: 1V)                | addresses     | R                   |
| Output current                                 | 3004H              | 0.0–3000.0A (Unit: 0.1A)          |               | R                   |
| Rotating speed                                 | 3005H              | 0-65535 (Unit: 1RPM)              |               | R                   |
| Output power                                   | 3006H              | -300.0–300.0% (Unit: 0.1%)        |               | R                   |
| Output torque                                  | 3007H              | -250.0–250.0% (Unit: 0.1%)        |               | R                   |
| PID setting                                    | 3008H              | -100.0–100.0% (Unit: 0.1%)        |               | R                   |
| PID feedback                                   | 3009H              | -100.0–100.0% (Unit: 0.1%)        |               | R                   |
| Input state                                    | 300AH              | 000-1FF                           |               |                     |
| Output state                                   | 300BH              | 000-1FF                           |               |                     |
| Al 1                                           | 300CH              | 0.00–10.00V (Unit:<br>0.01V)      |               | R                   |
| Al 2                                           | 300DH              | 0.00–10.00V (Unit: 0.01V)         |               | R                   |
| Al 3                                           | 300EH              | -10.00–10.00V (Unit: 0.01V)       |               | R                   |
| Al 4                                           | 300FH              | Reserved                          |               | R                   |
| Read input of high-speed pulse                 | 3010H              | 0.000–50.000kHz (Unit:<br>0.01Hz) |               | R                   |
| Read input of high-speed pulse 2               | 3011H              | Reserved                          |               | R                   |
| PLC and current<br>step of multi-step<br>speed | 3012H              | 0–15                              |               | R                   |
| External length                                | 3013H              | 0-65535                           |               | R                   |
| External count value                           | 3014H              | 0–65535                           |               | R                   |
| Torque setting                                 | 3015H              | -300.0–300.0% (Unit: 0.1%)        |               | R                   |
| Inverter                                       | 3016H              |                                   |               | R                   |

| Function instruction | Address definition | Data meaning instruction |  | R/W characteristics |
|----------------------|--------------------|--------------------------|--|---------------------|
| identification code  |                    |                          |  |                     |
| Fault code           | 5000H              |                          |  | R                   |

R/W characteristics means the function is with read and write characteristics. For example, "communication control command" is writing chrematistics and control the inverter with writing command (06H). R characteristic can only read other than write and W characteristic can only write other than read.

**Note:** when operating on the inverter with the table above, it is necessary to enable some parameters. For example, the operation of running and stopping, it is necessary to set P00.01 to communication running command channel.

The encoding rules for device codes (corresponding to identifying code 2103H of the inverter

| MSB of code | Meaning  | LSB of code | Meaning             |          |  |
|-------------|----------|-------------|---------------------|----------|--|
| 0x01        | Goodrive | 0x90        | Goodrive100-PV Seri | es Solar |  |
| 0001        | Goodiive | 0.090       | Pump Inverter       |          |  |

**Note:** The code is consisted of 16 bit which is high 8 bits and low 8 bits. High 8 bits mean the motor type series and low 8 bits mean the derived motor types of the series.

# 8.4.3 Fieldbus ratio values

The communication data is expressed by hex in actual application and there is no radix point in hex. For example, 50.12Hz cannot be expressed by hex so 50.12 can be magnified by 100 times into 5012, so hex 1394H can be used to express 50.12.

A non-integer can be timed by a multiple to get an integer and the integer can be called fieldbus ratio values.

The fieldbus ratio values are referred to the radix point of the setting range or default value in the function parameter list. If there are figures behind the radix point (n=1), then the fieldbus ratio value m is 10°. Take the table as the example:

| Function code | Name                        | Description             | Default | Modify |
|---------------|-----------------------------|-------------------------|---------|--------|
| P01.21        | Power-off restart selection | 0: Disable<br>1: Enable | 0       | 0      |

The value specified in "Setting range" or "Default" contains one decimal, so the fieldbus scale is 10. If the value received by the upper computer is 50, the value of "Wake-up-from-sleep delay" of the inverter is 5.0 (5.0=50/10).

To set the "Wake-up-from-sleep delay" to 5.0s through Modbus communication, you need first to multiply 5.0 by 10 according to the scale to obtain an integer 50, that is, 32H in the hexadecimal form, and then transmit the following write command:

# 01 06 01 14 00 32 49 E7

Inverter Write Parameters Data number CRC check address command address

After receiving the command, the inverter converts 50 into 5.0 based on the fieldbus scale, and then sets "Wake-up-from-sleep delay" to 5.0s.

For another example, after the upper computer transmits the "Wake-up-from-sleep delay" parameter command, the master receives the following response from the inverter:

 01
 03
 02
 00 32
 39 91

 Inverter
 Read address command address
 2-byte data
 Parameters data
 CRC check

The parameter data is 0032H, that is, 50, so 5.0 is obtained based on the fieldbus scale (50/10=5.0). In this case, the master identifies that the "Wake-up-from-sleep delay" is 5.0s.

### 8.4.4 Error message response

Operation errors may occur in communication-based control. For example, some parameters can only be read, but a write command is transmitted. In this case, the inverter returns an error message response. Error message responses are sent from the inverter to the master. The following table describes the codes and definitions of the error message responses.

| Code | Name                  | Meaning                                                                                                                                                                                                                                                                        |
|------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01H  | Invalid<br>command    | The command code received by the upper computer is not allowed to be executed. The possible causes are as follows:  The function code is applicable only on new devices and is not implemented on this device.  The slave is in the faulty state when processing this request. |
| 02H  | Invalid data address. | For the inverter, the data address in the request of the upper<br>computer is not allowed. In particular, the combination of the<br>register address and the number of the to-be-transmitted<br>bytes is invalid.                                                              |
| 03H  | Invalid data<br>value | The received data domain contains a value that is not allowed. The value indicates the error of the remaining structure in the combined request.  Note: It does not mean that the data item submitted for storage in the register includes a value unexpected by the program.  |
| 04H  | Operation failure     | The parameter is set to an invalid value in the write operation. For example, a function input terminal cannot be set repeatedly.                                                                                                                                              |

| Code | Name                                             | Meaning                                                                                                                                                                                                |
|------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 05H  | Password error                                   | The password entered in the password verification address is different from that set in P07.00.                                                                                                        |
| 06H  | Data frame<br>error                              | The length of the data frame transmitted by the upper computer is incorrect, or in the RTU format, the value of the CRC check bit is inconsistent with the CRC value calculated by the lower computer. |
| 07H  | Parameter read-only                              | The parameter to be modified in the write operation of the upper computer is a read-only parameter.                                                                                                    |
| 08H  | Parameter<br>cannot be<br>modified in<br>running | The parameter to be modified in the write operation of the upper computer cannot be modified during the running of the inverter.                                                                       |
| 09H  | Password protection                              | A user password is set, and the upper computer does not provide the password to unlock the system when performing a read or write operation. The error of "system locked" is reported.                 |

The slave uses functional code fields and fault addresses to indicate it is a normal response or some error occurs (named as objection response). For normal responses, the slave shows corresponding function codes, digital address or sub-function codes as the response. For objection responses, the slave returns a code which equals the normal code, but the first byte is logic 1.

For example: when the master sends a message to the slave, requiring it to read a group of address data of the inverter function codes, there will be following function codes:

For normal responses, the slave responds the same codes, while for objection responses, it will return:

Besides the function codes modification for the objection fault, the slave will respond a byte of abnormal code which defines the error reason.

When the master receives the response for the objection, in a typical processing, it will send the message again or modify the corresponding order.

For example, set the "running command channel" of the inverter (P00.01, parameter address is 0001H) with the address of 01H to 03, the command is as following:

| <u>01</u>           | <u>06</u>     | <u>00 01</u>          | <u>00 03</u>       | <u>98 0B</u> |
|---------------------|---------------|-----------------------|--------------------|--------------|
| Inverter<br>address | Write command | Parameters<br>address | Parameters<br>data | CRC check    |

But the setting range of "running command channel" is 0–2, if it is set to 3, because the number is beyond the range, the inverter will return fault response message as follows.

01 86 04 43 A3

Inverter address response code Fault code CRC check

Abnormal response code 86H means the abnormal response to writing command 06H; the fault code is 04H. In the table above, its name is operation failed and its meaning is that the parameter setting in parameter writing is invalid. For example, the function input terminal cannot be set repeatedly.

# 8.5 Read/Write operation example

For details about the formats of the read and write commands, see section 8.3.

### 8.5.1 Examples of reading command 03H

Example 1: Read the state word 1 of the inverter whose address is 01H. See 8.4.2 Description of other function addresses in Modbus, the parameter address of the state word 1 of the inverter is 2100H.

### RTU mode:

The command sent to the inverter:

01 03 21 00 00 01 8E 36

Inverter Read address command address address Data number CRC check

If the response message is as follows.

01 03 02 00 03 F8 45

Inverter Read Data Data Content CRC check address command address

#### ASCII mode:

The command sent to the inverter:

: 01 03 21 00 00 01 DA CR LF

START Inverter address command address address

If the operation is successful, the following response is returned:

: 01 03 02 00 03 F7 CR LF

The data content is 0003H. From the table 1, the inverter stops.

# 8.5.2 Examples of writing command 06H

Example 1: Set the inverter whose address is 03H to be forward running. See 8.4.2 Description of other function addresses in Modbus, the address of "Communication control command" is 2000H, and 0001H indicates forward running.

| Function instruction | Address definition | Data meaning instruction              | R/W characteristics |  |
|----------------------|--------------------|---------------------------------------|---------------------|--|
|                      |                    | 0001H: Forward running                |                     |  |
|                      | 2000H              | 0002H: Reverse running                |                     |  |
| 0                    |                    | 0003H: Forward jogging                |                     |  |
| Communication        |                    | 0004H: Reverse jogging                | R/W                 |  |
| control<br>command   |                    | 0005H: Stop                           | FC/VV               |  |
|                      |                    | 0006H: Coast to stop (emergency stop) |                     |  |
|                      |                    | 0007H: Fault reset                    |                     |  |
|                      |                    | 0008H: Jogging to stop                |                     |  |

### RTU mode:

The command sent by the master:

 03
 06
 20 00
 00 01
 42 28

 Inverter address address
 Write command address address
 Forward running
 CRC check

If the operation is successful, the following response (same as the command transmitted from the master) is returned:

 03
 06
 20 00
 00 01
 42 28

 Inverter address address
 Write command address address
 Forward running running
 CRC check running

### ASCII mode:

The command sent to the inverter:

| <u>:</u> | <u>01</u>           | <u>06</u> | <u> 20 00</u>           | <u>00 01</u>   | <u>D6</u>    | CR LF |
|----------|---------------------|-----------|-------------------------|----------------|--------------|-------|
| START    | Inverter<br>address | Write     | Parameters<br>I address | Data<br>number | LRC<br>check | END   |

If the operation is successful, the following response (same as the command transmitted from the master) is returned:

: 01 06 20 00 01 D6 CR LF

| START | Inverter | Write | Parameters | Data | LRC | number | check | END |

Example 2: set the max output frequency of the inverter with the address of 03H as 100Hz.

| Function code | Name                  | Description                                                                                                                                                 | Default | Modify |
|---------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P00.03        | Max. output frequency | Used to set the max. output frequency of the inverter. It is the basis of frequency setup and the acceleration/deceleration. Setting range: P00.04–400.00Hz |         | ©      |

See the figures behind the radix point, the fieldbus ratio value of max. output frequency (P00.03) is 100. 100Hz timed by 100 is 10000 and the corresponding hex is 2710H.

### RTU mode:

The command sent by the master:

 03
 06
 00 03
 27 10
 62 14

 Inverter address
 Write command command address
 Parameters address
 Parameter data
 CRC check

If the operation is successful, the following response (same as the command transmitted from the master) is returned:

 03
 06
 00 03
 27 10
 62 14

 Inverter address
 Write command command address
 Parameters parameter data
 CRC check

### ASCII mode:

The command sent to the inverter:

: 03 06 00 03 27 10 BD CR LF

START address command address Parameter LRC Leck Leck END

If the operation is successful, the following response (same as the command transmitted from the master) is returned:

: 03 06 00 03 27 10 BD CR LF

Inverter address command address data address command address command address ad

## 8.5.3 Examples of continuous writing command10H

Example 1: Set the inverter whose address is 01H to be forward running at the frequency of 10Hz. See 8.4.2 Description of other function addresses in Modbus, the address of "Communication control command" is 2000H, and 0001H indicates forward running. The address of "Communication frequency setting" is 2001H, and 10 Hz is 03E8H in the hexadecimal form.

| Function instruction  | Address definition | Data meaning instruction                | R/W characteristics |  |
|-----------------------|--------------------|-----------------------------------------|---------------------|--|
|                       |                    | 0001H: Forward running                  |                     |  |
|                       |                    | 0002H: Reverse running                  | - R/W               |  |
| Communication         |                    | 0003H: Forward jogging                  |                     |  |
| control               | 2000H              | 0004H: Reverse jogging                  |                     |  |
| command               |                    | 0005H: Stop                             |                     |  |
| Command               |                    | 0006H: Coast to stop (emergency stop)   |                     |  |
|                       |                    | 0007H: Fault reset                      |                     |  |
|                       |                    | 0008H: Jogging to stop                  |                     |  |
| Address of            | 2001H              | Communication setting frequency (0-Fmax |                     |  |
| communication setting |                    | (unit: 0.01Hz))                         | R/W                 |  |
|                       | 2002H              | PID given, range (0–1000, 1000          | R/VV                |  |
|                       | 200211             | corresponds to100.0%)                   |                     |  |

### RTU mode:

The command sent to the inverter:

| <u>01</u>        | <u>10</u>                        | <u>20 00</u>          | <u>00 02</u>   | <u>04</u>      | <u>00 01 0</u>  | 3 E8 | <u>3B 10</u> |
|------------------|----------------------------------|-----------------------|----------------|----------------|-----------------|------|--------------|
| Inverter address | Continuous<br>writing<br>command | Parameters<br>address | Data<br>number | Byte<br>number | Forward running | 10Hz | CRC check    |

If the operation is successful, the following response is returned:

| <u>01</u>        | <u>10</u>             | <u>20 00</u>       | <u>00 02</u>   | <u>4A 08</u> |
|------------------|-----------------------|--------------------|----------------|--------------|
| Inverter address | Continuous<br>writing | Parameters address | Data<br>number | CRC check    |

### ASCII mode:

The command sent to the inverter:

| <u>:</u> | <u>01</u>        | <u>10</u>             | <u>20 00</u>       | <u>00 02</u>   | <u>04</u>      | <u>00 01 03 E8</u> | <u>BD</u>    | <u>CR LF</u> |
|----------|------------------|-----------------------|--------------------|----------------|----------------|--------------------|--------------|--------------|
| START    | Inverter address | Continuous<br>writing | Parameters address | Data<br>number | Byte<br>number | Forward 10Hz       | LRC<br>check | END          |

If the operation is successful, the following response is returned:

: 01 10 20 00 002 CD CR LF

START Inverter address command address address address number check END

Example 2: Set ACC time of 01H inverter as 10s and DEC time as 20s.

| P00.11 | ACC time 1 | Setting range of P00.11 and P00.12: | Model depended | 0 |
|--------|------------|-------------------------------------|----------------|---|
| P00.12 | DEC time 1 | 0.0-3600.0s                         | Model depended | 0 |

The corresponding address of P00.11 is 000B, the ACC time of 10s corresponds to 0064H, and the DEC time of 20s corresponds to 00C8H.

### RTU mode:

The command sent to the inverter:

| <u>01</u>        | <u>10</u>                        | <u>00 0B</u>          | <u>00 02</u>   | <u>04</u>      | <u>00 64</u> | <u>00 C8</u> | <u>F2 55</u> |
|------------------|----------------------------------|-----------------------|----------------|----------------|--------------|--------------|--------------|
| Inverter address | Continuous<br>writing<br>command | Parameters<br>address | Data<br>number | Byte<br>number | 10s          | 20s          | CRC check    |

If the operation is successful, the following response is returned:

| <u>01</u>        | <u>10</u>                        | <u>00 0B</u>          | <u>00 02</u>   | <u>30 0A</u> |
|------------------|----------------------------------|-----------------------|----------------|--------------|
| Inverter address | Continuous<br>writing<br>command | Parameters<br>address | Data<br>number | CRC check    |

### ASCII mode:

The command sent to the inverter:

| <u>:</u> | <u>01</u>        | <u>10</u>                        | <u>00 0B</u>       | <u>00 02</u> | <u> </u>        | <u> 10 64</u> | 00 C8 | <u>B2</u>    | <u>CR LF</u> |
|----------|------------------|----------------------------------|--------------------|--------------|-----------------|---------------|-------|--------------|--------------|
| START    | Inverter address | Continuous<br>writing<br>command | Parameters address |              | Number of bytes | 10s           | 20s   | LRC<br>check | END          |

If the operation is successful, the following response is returned:

| <u>:</u> | <u>01</u>        | <u>10</u>             | <u>00 0B</u>          | <u>00 02</u>   | <u>E2</u>    | CR LF |
|----------|------------------|-----------------------|-----------------------|----------------|--------------|-------|
| START    | Inverter address | Continuous<br>writing | Parameters<br>address | Data<br>number | LRC<br>check | END   |

**Note:** The blank in the above command is for illustration. The blank cannot be added in the actual application unless the upper monitor can remove the blank by themselves.

# 8.6 Common communication faults

Common communication faults include the following:

No response is returned.

♦ The inverter returns an exception response.

Possible causes of no response include the following:

- The serial port is set incorrectly. For example, the converter uses the serial port COM1, but COM2 is selected for the communication.
- The settings of the baud rates, data bits, stop bits, and check bits are inconsistent with those set on the inverter.
- ♦ The positive pole (+) and negative pole (-) of the RS485 bus are connected reversely.
- The RS485 wire cap on the terminal board of the inverter is not connected. This wire cap is at the back of the terminal block.

# **Appendix A Options**

### A.1 Boost module

The pump inverters ≤ 2.2KW support the installation of the boost module (PP100-3R2-PV) to improve the utilization of the solar modules. The figure below shows the wiring method.

- Connect PV+ and PV- of the boost module to the positive input terminal and negative input terminal of the modules respectively.
- Connect the output terminals (+) and (-) of the boost module to the input terminals (+) and (-) of the pump inverter.
- Connect 422-communication receiving terminal RX of the boost module to 422-communication sending terminal TX of the pump inverter. Connect 422-communication sending terminal TX of the boost module to 422-communication receiving terminal RX of the pump inverter. Use twisted pairs for wiring.
- 4. If the wiring is connected, switch on the breaker Q1 at the DC side for automotive running.

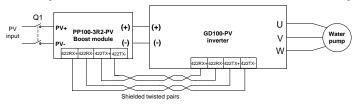



Figure A-1 Connection between the boost module and the inverter

Boost module specifications:

| Model                    | PP100-3R2-PV                           |
|--------------------------|----------------------------------------|
| Wodei                    | PP100-3R2-PV                           |
| Input side               |                                        |
| Max. input power (W)     | 3200                                   |
| Max. DC voltage (V)      | 600                                    |
| Start voltage (V)        | 80                                     |
| Min. working voltage (V) | 70                                     |
| Max. input current (A)   | 12                                     |
| Output side              |                                        |
| Output voltage (V)       | 220V inverter: 350; 380V inverter: 570 |

Status indicator description:

| Display state        | Description                                                               |
|----------------------|---------------------------------------------------------------------------|
| Green LED flickering | The boost module has been powered on, and the control circuit is working. |
| Green LED on         | The boost module is running.                                              |
| Red LED on           | The boost module is faulty.                                               |

The figure below shows the installation dimension drawing of the boost module.



Figure A-2 Installation dimensions of the boost module

# A.2 GPRS module and monitoring APP

The pump inverter supports an optional GPRS module to implement remote monitoring, and the GPRS module connects to the inverters through 485 communication. The running state of the inverter can be monitored in real time on the APP in the mobile phone or web page.

Method for connecting the GPRS module to the inverter:

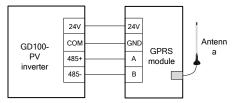



Figure A-3 Connection between the GPRS module and the inverter

For details, see the *GPRS/GPS Adaptor Operation Manual* which comes with the GPRS module or contact the local INVT office. Provide the model and serial number of the product you query about.

### A.3 Cable

### A.3.1 Power cable

The sizes of the input power cables and motor cables must comply with local regulations.

**Note:** If the electrical conductivity of the motor cable shield layer does not meet the requirements, a separate PE conductor must be used.

### A.3.2 Control cable

A relay cable needs to carry the metal braided shield layer.

Keypads need to be connected by using network cables. In complicated electromagnetic environments, shielded network cables are recommended.

A shielded twisted-pair cable is recommended for a communication cable.

#### Note:

- Analog signals and digital signals cannot share a same cable, and their cables must be routed separately.
- Before connecting the input power cable of the inverter, check the insulation conditions of the cable according to local regulations.

Recommended power cable sizes for standard inverter models:

| Model             | Recommended cable (mm²) | Terminal | Tightening torque |         |
|-------------------|-------------------------|----------|-------------------|---------|
|                   | (+)/(-), R/S/T, U/V/W   | PE       | screw             | (Nm)    |
| GD100-0R4G-S2-PV  | 1.5                     | 1.5      | M4                | 8.0     |
| GD100-0R7G-S2-PV  | 1.5                     | 1.5      | M4                | 8.0     |
| GD100-0R4G-SS2-PV | 1.5                     | 1.5      | M4                | 8.0     |
| GD100-0R7G-4-PV   | 1.5                     | 1.5      | M4                | 8.0     |
| GD100-1R5G-4-PV   | 1.5                     | 1.5      | M4                | 8.0     |
| GD100-2R2G-4-PV   | 1.5                     | 1.5      | M4                | 8.0     |
| GD100-1R5G-S2-PV  | 2.5                     | 2.5      | M4                | 8.0     |
| GD100-2R2G-S2-PV  | 2.5                     | 2.5      | M4                | 8.0     |
| GD100-0R7G-SS2-PV | 2.5                     | 2.5      | M4                | 8.0     |
| GD100-1R5G-SS2-PV | 2.5                     | 2.5      | M4                | 8.0     |
| GD100-2R2G-SS2-PV | 2.5                     | 2.5      | M4                | 8.0     |
| GD100-004G-4-PV   | 2.5                     | 2.5      | M4                | 1.2-1.5 |
| GD100-5R5G-4-PV   | 2.5                     | 2.5      | M4                | 1.2-1.5 |
| GD100-1R5G-2-PV   | 2.5                     | 2.5      | M4                | 1.2-1.5 |
| GD100-2R2G-2-PV   | 2.5                     | 2.5      | M4                | 1.2-1.5 |
| GD100-7R5G-4-PV   | 4                       | 4        | M5                | 2–2.5   |
| GD100-004G-2-PV   | 4                       | 4        | M5                | 2–2.5   |

| Model           | Recommended cable (mm²) | Terminal | Tightening torque |       |
|-----------------|-------------------------|----------|-------------------|-------|
|                 | (+)/(-), R/S/T, U/V/W   | PE       | screw             | (Nm)  |
| GD100-011G-4-PV | 6                       | 6        | M5                | 2-2.5 |
| GD100-5R5G-2-PV | 6                       | 6        | M5                | 2-2.5 |
| GD100-015G-4-PV | 10                      | 10       | M5                | 2-2.5 |
| GD100-7R5G-2-PV | 10                      | 10       | M5                | 2-2.5 |
| GD100-018G-4-PV | 16                      | 16       | M5                | 2-2.5 |
| GD100-022G-4-PV | 25                      | 16       | M5                | 2-2.5 |
| GD100-030G-4-PV | 25                      | 16       | M6                | 4–6   |
| GD100-037G-4-PV | 35                      | 16       | M6                | 4–6   |
| GD100-045G-4-PV | 35                      | 16       | M8                | 10    |
| GD100-055G-4-PV | 50                      | 25       | M8                | 10    |
| GD100-075G-4-PV | 70                      | 35       | M8                | 10    |
| GD100-090G-4-PV | 95                      | 50       | M12               | 31–40 |
| GD100-110G-4-PV | 120                     | 70       | M12               | 31–40 |
| GD100-132G-4-PV | 185                     | 95       | M12               | 31–40 |
| GD100-160G-4-PV | 240                     | 95       | M12               | 31–40 |
| GD100-185G-4-PV | 120*2P                  | 150      | M12               | 31–40 |
| GD100-200G-4-PV | 120*2P                  | 150      | M12               | 31–40 |
| GD100-220G-4-PV | 120*2P                  | 95       | M12               | 31–40 |
| GD100-250G-4-PV | 120*2P                  | 95       | M12               | 31–40 |
| GD100-280G-4-PV | 150*2P                  | 150      | M12               | 31–40 |
| GD100-315G-4-PV | 150*2P                  | 150      | M12               | 31–40 |
| GD100-355G-4-PV | 185*2P                  | 185      | M12               | 31–40 |
| GD100-400G-4-PV | 150*3P                  | 120*2P   | M12               | 31–40 |
| GD100-450G-4-PV | 185*3P                  | 120*2P   | M12               | 31–40 |
| GD100-500G-4-PV | 185*3P                  | 120*2P   | M12               | 31–40 |

### Note:

- For the cable selection for IP54 models, see the cables applicable to the models with the same power as model IP54 in this table.
- The cables recommended for the main circuit can be used in scenarios where the ambient temperature is lower than 40°C, the wiring distance is shorter than 100 m, and the current is the rated current.
- If a control cable and power cable must cross each other, ensure that the angle between them is 90 degrees.
- If the inside of motor is moist, the insulation resistance is reduced. If you suspect the inside
  of motor is moist, dry and re-measure the motor.

#### A.4 Harmonic filter

If you want to use long cables between the VFD and the motor, select external output reactors, dv/dt attenuation filters, or sine-wave filters based on the motor cable length. This helps mitigate excessive dv/dt, reducing voltage stress on the motor windings as well as protecting them, and extending the motor's lifespan. Refer to the following table for recommended output filter selections according to motor cable length. Motor cable length by output filter:

| Non-shielded cable length | 50m–150m            | 150m–450m     | 450m–1000m        |
|---------------------------|---------------------|---------------|-------------------|
| Shielded cable length     | 30m–100m            | 100m–230m     | 230m–500m         |
| Output filter             | Output reactor (1%) | 1             | 1                 |
| type                      | 1                   | dv/dt filters | /                 |
|                           | 1                   | /             | Sine-wave filters |

Output reactor model selection:

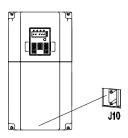
| Inverter model  | Output reactor  |  |  |
|-----------------|-----------------|--|--|
| GD100-1R5G-2-PV | GDL-OCL0010-4CU |  |  |
| GD100-2R2G-2-PV | GDL-OCL0010-4CU |  |  |
| GD100-004G-2-PV | GDL-OCL0014-4CU |  |  |
| GD100-5R5G-2-PV | GDL-OCL0020-4CU |  |  |
| GD100-7R5G-2-PV | GDL-OCL0035-4AL |  |  |
| GD100-0R7G-4-PV | GDL-OCL0005-4CU |  |  |
| GD100-1R5G-4-PV | GDL-OCL0005-4CU |  |  |
| GD100-2R2G-4-PV | GDL-OCL0006-4CU |  |  |
| GD100-004G-4-PV | GDL-OCL0010-4CU |  |  |
| GD100-5R5G-4-PV | GDL-OCL0014-4CU |  |  |
| GD100-7R5G-4-PV | GDL-OCL0020-4CU |  |  |
| GD100-011G-4-PV | GDL-OCL0025-4CU |  |  |
| GD100-015G-4-PV | GDL-OCL0035-4AL |  |  |
| GD100-018G-4-PV | GDL-OCL0040-4AL |  |  |
| GD100-022G-4-PV | GDL-OCL0050-4AL |  |  |
| GD100-030G-4-PV | GDL-OCL0060-4AL |  |  |
| GD100-037G-4-PV | GDL-OCL0075-4AL |  |  |
| GD100-045G-4-PV | GDL-OCL0092-4AL |  |  |
| GD100-055G-4-PV | GDL-OCL0115-4AL |  |  |
| GD100-075G-4-PV | GDL-OCL0150-4AL |  |  |
| GD100-090G-4-PV | GDL-OCL0220-4AL |  |  |
| GD100-110G-4-PV | GDL-OCL0220-4AL |  |  |
| GD100-132G-4-PV | GDL-OCL0265-4AL |  |  |

| Inverter model  | Output reactor  |
|-----------------|-----------------|
| GD100-160G-4-PV | GDL-OCL0330-4AL |
| GD100-185G-4-PV | GDL-OCL0400-4AL |
| GD100-200G-4-PV | GDL-OCL0400-4AL |
| GD100-220G-4-PV | GDL-OCL0450-4AL |
| GD100-250G-4-PV | GDL-OCL0500-4AL |
| GD100-280G-4-PV | GDL-OCL0560-4AL |
| GD100-315G-4-PV | GDL-OCL0660-4AL |
| GD100-355G-4-PV | GDL-OCL0660-4AL |
| GD100-400G-4-PV | GDL-OCL0720-4AL |
| GD100-450G-4-PV | GDL-OCL0820-4AL |
| GD100-500G-4-PV | GDL-OCL1000-4AL |

#### Note:

- The rated output voltage drop of output reactors is 1%.
- All the options in the preceding table are externally configured. You need to specify
  whether the options are externally configured in your purchase order.

### Output filter selection:


| Inverter model  | dv/dt filter    | Sine-wave filter |
|-----------------|-----------------|------------------|
| GD100-1R5G-2-PV | GDL-DUL0010-4CU | GDL-OSF0010-4AL  |
| GD100-2R2G-2-PV | GDL-DUL0010-4CU | GDL-OSF0010-4AL  |
| GD100-004G-2-PV | GDL-DUL0014-4CU | GDL-OSF0014-4AL  |
| GD100-5R5G-2-PV | GDL-DUL0020-4CU | GDL-OSF0020-4AL  |
| GD100-7R5G-2-PV | GDL-DUL0032-4CU | GDL-OSF0032-4AL  |
| GD100-0R7G-4-PV | GDL-DUL0005-4CU | GDL-OSF0005-4AL  |
| GD100-1R5G-4-PV | GDL-DUL0005-4CU | GDL-OSF0005-4AL  |
| GD100-2R2G-4-PV | GDL-DUL0005-4CU | GDL-OSF0005-4AL  |
| GD100-004G-4-PV | GDL-DUL0010-4CU | GDL-OSF0010-4AL  |
| GD100-5R5G-4-PV | GDL-DUL0014-4CU | GDL-OSF0014-4AL  |
| GD100-7R5G-4-PV | GDL-DUL0020-4CU | GDL-OSF0020-4AL  |
| GD100-011G-4-PV | GDL-DUL0025-4CU | GDL-OSF0025-4AL  |
| GD100-015G-4-PV | GDL-DUL0032-4CU | GDL-OSF0032-4AL  |
| GD100-018G-4-PV | GDL-DUL0040-4AL | GDL-OSF0040-4AL  |
| GD100-022G-4-PV | GDL-DUL0045-4AL | GDL-OSF0045-4AL  |
| GD100-030G-4-PV | GDL-DUL0060-4AL | GDL-OSF0060-4AL  |
| GD100-037G-4-PV | GDL-DUL0075-4AL | GDL-OSF0075-4AL  |
| GD100-045G-4-PV | GDL-DUL0100-4AL | GDL-OSF0095-4AL  |
| GD100-055G-4-PV | GDL-DUL0120-4AL | GDL-OSF0120-4AL  |

| Inverter model  | dv/dt filter    | Sine-wave filter |
|-----------------|-----------------|------------------|
| GD100-075G-4-PV | GDL-DUL0150-4AL | GDL-OSF0150-4AL  |
| GD100-090G-4-PV | GDL-DUL0180-4AL | GDL-OSF0180-4AL  |
| GD100-110G-4-PV | GDL-DUL0220-4AL | GDL-OSF0220-4AL  |
| GD100-132G-4-PV | GDL-DUL0260-4AL | GDL-OSF0260-4AL  |
| GD100-160G-4-PV | GDL-DUL0320-4AL | GDL-OSF0320-4AL  |
| GD100-185G-4-PV | GDL-DUL0400-4AL | GDL-OSF0400-4AL  |
| GD100-200G-4-PV | GDL-DUL0400-4AL | GDL-OSF0400-4AL  |
| GD100-220G-4-PV | GDL-DUL0480-4AL | GDL-OSF0480-4AL  |
| GD100-250G-4-PV | GDL-DUL0480-4AL | GDL-OSF0480-4AL  |
| GD100-280G-4-PV | GDL-DUL0540-4AL | GDL-OSF0600-4AL  |
| GD100-315G-4-PV | GDL-DUL0600-4AL | GDL-OSF0600-4AL  |
| GD100-355G-4-PV | GDL-DUL0800-4AL | GDL-OSF0800-4AL  |
| GD100-400G-4-PV | GDL-DUL0800-4AL | GDL-OSF0800-4AL  |
| GD100-450G-4-PV | GDL-DUL1000-4AL | GDL-OSF1000-4AL  |
| GD100-500G-4-PV | GDL-DUL1000-4AL | GDL-OSF1000-4AL  |

### A.5 EMC filter

Goodrive100-PV series inverters of ≥ 4kW contain built-in C3 filters. You can use the jumper J10 to determine whether to connect it.

Connection method: Open the lower cover, find the location of J10, and insert the jumper terminals delivered with the inverter.



Note: The input EMI meets the C3 requirements after a filter is configured.

# Appendix B Recommended solar module configuration

# B.1 Recommended solar module configuration for solar pump inverters

|                           | class of solar r | ass of solar module                |                 |                                    |
|---------------------------|------------------|------------------------------------|-----------------|------------------------------------|
| Calar numn inverter       | 45               | ±1V                                | 52              | ±1V                                |
| Solar pump inverter model | Module<br>power  | Modules<br>per string *<br>Strings | Module<br>power | Modules<br>per string *<br>Strings |
| GD100-0R4G-SS2-PV         | 550              | 9*1 *                              | 630             | 8*1 *                              |
| GD100-0R7G-SS2-PV         | 550              | 9*1 <b>*</b>                       | 630             | 8*1 <b>*</b>                       |
| GD100-1R5G-SS2-PV         | 550              | 9*1 <b>*</b>                       | 630             | 8*1 <b>*</b>                       |
| GD100-2R2G-SS2-PV         | 550              | 9*1 *                              | 630             | 8*1 *                              |
| GD100-0R4G-S2-PV          | 550              | 9*1                                | 630             | 8*1                                |
| GD100-0R7G-S2-PV          | 550              | 9*1                                | 630             | 8*1                                |
| GD100-1R5G-S2-PV          | 550              | 9*1                                | 630             | 8*1                                |
| GD100-2R2G-S2-PV          | 550              | 9*1                                | 630             | 8*1                                |
| GD100-1R5G-2-PV           | 550              | 9*1                                | 630             | 8*1                                |
| GD100-2R2G-2-PV           | 550              | 9*1                                | 630             | 8*1                                |
| GD100-004G-2-PV           | 550              | 9*1                                | 630             | 9*1                                |
| GD100-5R5G-2-PV           | 550              | 9*2                                | 630             | 8*2                                |
| GD100-7R5G-2-PV           | 550              | 9*2                                | 630             | 8*2                                |
| GD100-0R7G-4-PV           | 550              | 15*1 <b>*</b>                      | 630             | 13*1 *                             |
| GD100-1R5G-4-PV           | 550              | 15*1 <b>*</b>                      | 630             | 13*1 *                             |
| GD100-2R2G-4-PV           | 550              | 15*1 <b>*</b>                      | 630             | 13*1 *                             |
| GD100-004G-4-PV           | 550              | 15*1                               | 630             | 13*1                               |
| GD100-5R5G-4-PV           | 550              | 15*1                               | 630             | 13*1                               |
| GD100-7R5G-4-PV           | 550              | 16*1                               | 630             | 15*1                               |
| GD100-011G-4-PV           | 550              | 15*2                               | 630             | 14*2                               |
| GD100-015G-4-PV           | 550              | 16*2                               | 630             | 15*2                               |
| GD100-018G-4-PV           | 550              | 15*3                               | 630             | 14*3                               |
| GD100-022G-4-PV           | 550              | 15*4                               | 630             | 14*4                               |
| GD100-030G-4-PV           | 550              | 15*5                               | 630             | 14*5                               |
| GD100-037G-4-PV           | 550              | 15*6                               | 630             | 15*5                               |
| GD100-045G-4-PV           | 550              | 16*7                               | 630             | 15*7                               |
| GD100-055G-4-PV           | 550              | 15*9                               | 630             | 15*8                               |
| GD100-075G-4-PV           | 550              | 15*12                              | 630             | 15*11                              |
| GD100-090G-4-PV           | 550              | 15*14                              | 630             | 15*13                              |
| GD100-110G-4-PV           | 550              | 15*18                              | 630             | 15*16                              |

| GD100-132G-4-PV | 550 | 15*21 | 630 | 15*19 |
|-----------------|-----|-------|-----|-------|
| GD100-160G-4-PV | 550 | 15*26 | 630 | 15*22 |
| GD100-185G-4-PV | 550 | 15*30 | 630 | 15*26 |
| GD100-200G-4-PV | 550 | 15*32 | 630 | 15*28 |
| GD100-220G-4-PV | 550 | 15*36 | 630 | 15*31 |
| GD100-250G-4-PV | 550 | 15*40 | 630 | 15*35 |
| GD100-280G-4-PV | 550 | 15*45 | 630 | 15*39 |
| GD100-315G-4-PV | 550 | 15*50 | 630 | 15*44 |
| GD100-355G-4-PV | 550 | 15*56 | 630 | 15*49 |
| GD100-400G-4-PV | 550 | 15*63 | 630 | 15*55 |
| GD100-450G-4-PV | 550 | 15*71 | 630 | 15*62 |
| GD100-500G-4-PV | 550 | 15*79 | 630 | 15*69 |

<sup>\*</sup>For models marked here, we recommend installing a boost module, which can significantly reduce the number of solar panels required.

# B.2 Recommended solar module configuration for inverters with boost module

|                     | Max. DC          | Open-ci         | rcuit voltage                      | class of solar  | r module                           |
|---------------------|------------------|-----------------|------------------------------------|-----------------|------------------------------------|
| PP100-3R2-PV        | input<br>current | 45±1V           |                                    | 49±1V           |                                    |
| Solar pump inverter | (A)              | Module<br>power | Modules per<br>string *<br>Strings | Module<br>power | Modules per<br>string *<br>Strings |
| GD100-0R4G-SS2-PV   | 15               | 550             | 3*1                                | 630             | 3*1                                |
| GD100-0R7G-SS2-PV   | 15               | 550             | 3*1                                | 630             | 3*1                                |
| GD100-1R5G-SS2-PV   | 15               | 550             | 4*1                                | 630             | 4*1                                |
| GD100-2R2G-SS2-PV   | 15               | 550             | 6*1                                | 630             | 5*1                                |
| GD100-0R4G-S2-PV    | 15               | 550             | 3*1                                | 630             | 3*1                                |
| GD100-0R7G-S2-PV    | 15               | 550             | 3*1                                | 630             | 3*1                                |
| GD100-1R5G-S2-PV    | 15               | 550             | 4*1                                | 630             | 4*1                                |
| GD100-2R2G-S2-PV    | 15               | 550             | 6*1                                | 630             | 5*1                                |
| GD100-1R5G-2-PV     | 15               | 550             | 4*1                                | 630             | 4*1                                |
| GD100-2R2G-2-PV     | 15               | 550             | 6*1                                | 630             | 6*1                                |
| GD100-0R7G-4-PV     | 15               | 550             | 5*1                                | 630             | 5*1                                |
| GD100-1R5G-4-PV     | 15               | 550             | 5*1                                | 630             | 5*1                                |
| GD100-2R2G-4-PV     | 15               | 550             | 6*1                                | 630             | 6*1                                |
| GD100-004G-4-PV     | 15               | 550             | 9*1                                | 630             | 9*1                                |

# Appendix C Power frequency & PV switching solution

#### C.1 Solution introduction

Generally, inverters do not allow simultaneous connection of power frequency and PV. If such simultaneous connection is required, switching control circuit needs to be configured externally. The following figure shows a solution for reference.

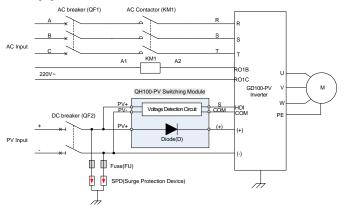



Figure C-1 Inverter power frequency & PV switching solution

See C.1.1 for specifications and model selection of QH100-PV switching module, whose necessary low-voltage apparatuses include QF1, KM1, QF2, FU, and SPD. See section C.1.2 for model selection information.

# C.1.1 QH100-PV switching module

### C.1.1.1. Models and specification

| Field                       | Sign | Description                 | Content                                            |
|-----------------------------|------|-----------------------------|----------------------------------------------------|
| Product series abbreviation | 1    | Product series abbreviation | QH100 series power frequency & PV switching module |

| Field            | Sign | Description                       | Content                                                                           |
|------------------|------|-----------------------------------|-----------------------------------------------------------------------------------|
| Rated current    | 2    | Power range for adaptive inverter | 055A—applies to inverters of ≤ 15kW<br>110A—applies to inverters of 18.5–<br>37kW |
| Voltage<br>class | 3    | Voltage class                     | 4: AC 3PH 380V (-15%)–440 (+10%)<br>2: AC 3PH 220V (-15%)–240 (+10%)              |
| Industry code    | 4    | Industry code                     | PV: Photovoltaic water pump series products                                       |

# C.1.1.2. Terminal description of QH100-PV switching module

| Terminal | Terminal name            | Description                                                                                                                      |  |  |  |
|----------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PV +     | PV input                 | Voltage detection board input, connecting to anode of PV input.                                                                  |  |  |  |
| PV –     | PV input                 | Voltage detection board input, connecting to cathode of PV input.                                                                |  |  |  |
| (+)      | Switching module output  | Cathode of diode module, connecting to (+) of the inverter.                                                                      |  |  |  |
| S, COM   | Voltage detection signal | ON/OFF signal, corresponding PV voltage greater/less than preset threshold, connecting to terminals HDI and COM of the inverter. |  |  |  |

#### C.1.1.3. Installation dimensions

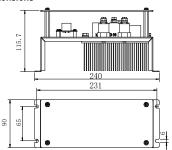



Figure C-2 Installation dimensions of the switching module (unit: mm)

**Note**: To ensure reliable operation of this product, external ventilation and heat dissipation measures are required.

# C.1.2 Model selection reference for low-voltage apparatuses

| Model                | AC<br>breaker<br>(A) | DC<br>breaker    | AC contactor (A) | SPD         | Fuse | Diode<br>I <sub>FAV</sub> /<br>V <sub>RRM</sub> |
|----------------------|----------------------|------------------|------------------|-------------|------|-------------------------------------------------|
| GD100-0R4G-S2-PV-AS  | 16                   |                  | 16               |             |      |                                                 |
| GD100-0R7G-S2-PV-AS  | 16                   |                  | 16               |             |      |                                                 |
| GD100-0R4G-SS2-PV-AS | 16                   |                  | 16               |             |      |                                                 |
| GD100-1R5G-2-PV-AS   | 16                   |                  | 16               |             |      |                                                 |
| GD100-1R5G-S2-PV-AS  | 25                   |                  | 25               |             |      |                                                 |
| GD100-0R7G-SS2-PV-AS | 16                   | 16               |                  |             | 25A/ |                                                 |
| GD100-2R2G-S2-PV-AS  | 40                   | 16A/<br>1000VDC  | 40               |             |      | 1600V                                           |
| GD100-1R5G-SS2-PV-AS | 25                   | 1000120          | 25               |             |      |                                                 |
| GD100-2R2G-SS2-PV-AS | 40                   |                  | 40               | Type<br>II, | 30A  |                                                 |
| GD100-0R7G-4-PV-AS   | 10                   |                  | 12               |             |      |                                                 |
| GD100-1R5G-4-PV-AS   | 10                   |                  | 12               |             |      |                                                 |
| GD100-2R2G-4-PV-AS   | 10                   |                  | 12               |             |      |                                                 |
| GD100-004G-4-PV-AS   | 25                   |                  | 25               |             |      |                                                 |
| GD100-5R5G-4-PV-AS   | 25                   |                  | 25               | 1000V<br>DC |      | 55A/<br>1600V                                   |
| GD100-2R2G-2-PV-AS   | 25                   | 25A/             | 25               | 20          |      |                                                 |
| GD100-004G-2-PV-AS   | 25                   | 1000VDC          | 25               |             |      |                                                 |
| GD100-7R5G-4-PV-AS   | 40                   |                  | 40               |             |      |                                                 |
| GD100-5R5G-2-PV-AS   | 40                   |                  | 40               |             |      | 1000 V                                          |
| GD100-011G-4-PV-AS   | 50                   | 63A/             | 50               |             |      |                                                 |
| GD100-7R5G-2-PV-AS   | 50                   | 1000VDC          | 50               | 1           |      |                                                 |
| GD100-015G-4-PV-AS   | 63                   |                  | 63               |             |      |                                                 |
| GD100-018G-4-PV-AS   | 63                   |                  | 63               |             |      |                                                 |
| GD100-022G-4-PV-AS   | 100                  | 100A/<br>1000VDC | 95               |             |      | 110A/                                           |
| GD100-030G-4-PV-AS   | 100                  |                  | 95               |             |      | 1600V                                           |
| GD100-037G-4-PV-AS   | 125                  | 125A/<br>1000VDC | 115              |             |      |                                                 |

| Model              | AC<br>breaker<br>(A) | DC<br>breaker    | AC contactor (A) | SPD | Fuse | Diode<br>I <sub>FAV</sub> /<br>V <sub>RRM</sub> |
|--------------------|----------------------|------------------|------------------|-----|------|-------------------------------------------------|
| GD100-045G-4-PV-AS | 200                  | 160A/<br>1000VDC | 170              |     |      | 160A/<br>1600V                                  |
| GD100-055G-4-PV-AS | 200                  | 250A/            | 170              |     |      | 250A/                                           |
| GD100-075G-4-PV-AS | 250                  | 1000VDC          | 205              |     |      | 1600V                                           |
| GD100-090G-4-PV-AS | 315                  | 350A/            | 245              |     |      | 350A/                                           |
| GD100-110G-4-PV-AS | 350                  | 1000VDC          | 265              |     |      | 1600V                                           |
| GD100-132G-4-PV-AS | 350                  | 400A/<br>1000VDC | 330              |     |      | 400A/<br>1600V                                  |
| GD100-160G-4-PV-AS | 400                  | 550A/            | 400              |     |      | 550A/                                           |
| GD100-185G-4-PV-AS | 500                  | 1000VDC          | 500              |     |      | 1600V                                           |
| GD100-200G-4-PV-AS | 500                  | 600A/<br>1000VDC | 500              |     |      | 600A/<br>1600V                                  |
| GD100-220G-4-PV-AS | 630                  | 630A/            | 630              |     |      | 630A/                                           |
| GD100-250G-4-PV-AS | 630                  | 1000VDC          | 630              |     |      | 1000V                                           |
| GD100-280G-4-PV-AS | 000                  | 800A/            | 000              |     |      | 800A/                                           |
| GD100-315G-4-PV-AS | 800                  | 1000VDC          | 800              |     |      | 1000V                                           |
| GD100-355G-4-PV-AS | 4000                 | 1000A/           | 4000             |     |      | 1000A/                                          |
| GD100-400G-4-PV-AS | 1000                 | 1000VDC          | 1000             |     |      | 1000V                                           |
| GD100-450G-4-PV-AS | 1050                 | 1250A/           | 4050             |     |      | 1250A/                                          |
| GD100-500G-4-PV-AS | 1250                 | 1000VDC          | 1250             |     |      | 1000V                                           |

# C.2 IP54 protection-level inverters

INVT provides IP54 protection-level inverters, which are divided into two types: One type implements auto power frequency & PV switching and the other type does not implement auto switching.

The following figure shows the dimensions of the inverter.

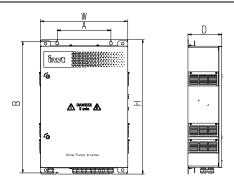



Figure C-3 Dimensions of IP54 inverter

Dimensions of IP54 inverter (unit: mm):

| Power (kW) | Model                 | w   | Н    | D   | Α   | В   |  |
|------------|-----------------------|-----|------|-----|-----|-----|--|
| 37         | GD100-037G-45-PV-AS   |     |      |     |     |     |  |
| 30         | GD100-030G-45-PV-AS   |     |      |     |     |     |  |
| 22         | GD100-022G-45-PV-AS   | 650 | 1000 | 250 | 400 | 975 |  |
| 18.5       | GD100-018G-45-PV-AS   |     |      |     |     |     |  |
| 15         | GD100-015G-45-PV-AS   |     |      |     |     |     |  |
| 11         | GD100-011G-45-PV-AS   |     |      |     |     |     |  |
| 7.5        | GD100-7R5G-45-PV-AS   |     |      |     |     |     |  |
| 7.5        | GD100-7R5G-25-PV-AS   | 550 | 000  | 205 | 400 | 075 |  |
| 5.5        | GD100-5R5G-45-PV-AS   | 550 | 900  | 225 | 400 | 875 |  |
| 5.5        | GD100-5R5G-25-PV-AS   |     |      |     |     |     |  |
| 4          | GD100-004G-45-PV-AS   |     |      |     |     |     |  |
| 4          | GD100-004G-25-PV-AS   |     |      |     |     |     |  |
|            | GD100-2R2G-45-PV-AS   |     |      |     |     |     |  |
| 2.2        | GD100-2R2G-S25-PV-AS  | 550 | 700  | 200 | 400 | 675 |  |
|            | GD100-2R2G-SS25-PV-AS |     |      |     |     |     |  |

| Power (kW) | Model                 | W | Н | D | Α | В |
|------------|-----------------------|---|---|---|---|---|
|            | GD100-1R5G-45-PV-AS   |   |   |   |   |   |
| 1.5        | GD100-1R5G-S25-PV-AS  |   |   |   |   |   |
|            | GD100-1R5G-SS25-PV-AS |   |   |   |   |   |
|            | GD100-0R7G-45-PV-AS   |   |   |   |   |   |
| 0.75       | GD100-0R7G-S25-PV-AS  |   |   |   |   |   |
|            | GD100-0R7G-SS25-PV-AS |   |   |   |   |   |
| 0.4        | GD100-0R4G-S25-PV-AS  |   |   |   |   |   |
| 0.4        | GD100-0R4G-SS25-PV-AS |   |   |   |   |   |

#### Note:

- The inverters that do not implement auto switching do not have the suffix -AS.
- The inverters ≤ 2.2kW are equipped with the boost module as standard configuration, supporting auto switching.
- For -S25 and -SS25 models equipped with the boost module, the DC input voltage cannot be greater than 440V. For -45 models equipped with the boost module, the DC input voltage cannot be greater than 600V.

### C.3 Wiring description

The following figures show the wiring terminals of IP54 inverters.

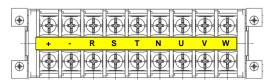



Figure C-4 Wiring terminals of 4-37kW models

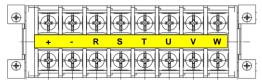



Figure C–5 Wiring terminals of -4 models for inverters ≤ 2.2kW

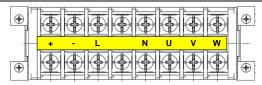



Figure C–6 Wiring terminals of -S2/-SS2 models for inverters ≤ 2.2kW

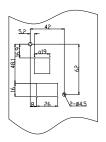
Terminal function description:

| Symbol   | Terminal name                     | Description                                                                                                                                               |
|----------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| R, S, T  |                                   | 3PH 380V/220V AC input terminals, connected to the grid                                                                                                   |
| N        | AC input                          | Neutral wire.  For inverter models of 4-37kW, it is required to use three-phase four-wire distribution system and connect the neutral wire to terminal N. |
| L, N     | AC input                          | 1PH 220V AC input terminals, connected to the grid                                                                                                        |
| (+), (-) | PV DC input                       | Input terminals of photovoltaic panels.                                                                                                                   |
| U, V, W  | Inverter output                   | 3PH/1PH AC output terminals, connected to pump motor. <b>Note</b> : 1PH motors must connect to terminals U and W.                                         |
| 4        | Safety<br>protection<br>grounding | Grounding terminal for safe protection; each machine must be properly grounded.  Note: The grounding terminal is located at the bottom of the chassis.    |

# C.4 Parameter setting method

Connect the external PV voltage detection signal to HDI terminal (auto switching by default). Ensure that the PV voltage detection threshold is 300V for the -4 models and it is 200V for the -2/-S2/-SS2 models.

After the correct connection, set P15.32 to 0.


# **Appendix D Dimension drawings**

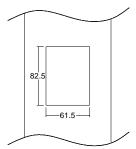
## D.1 External keypad structure










Installation hole (unit:mm)

**Note**: The inverter models of 380V 2.2kW and lower support an optional extermal keypad, and the keypad of inverter models of 380V 4kW and higher can be installed on another device.

If the keypad is externally installed on an optional bracket, it can be 20 meters away from the inverter at most.







Installation dimensions (unit:mm)

# D.2 Dimensions of wall mounting

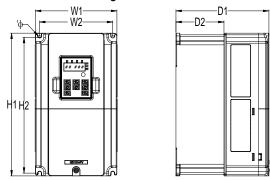



Figure D-1 Wall mounting of 0.4-75kW models

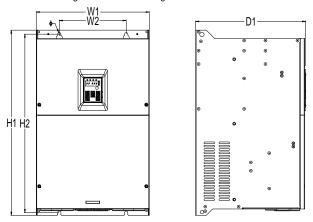



Figure D-2 Wall mounting of 90-110kW models

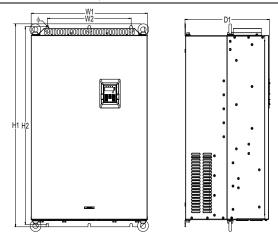



Figure D-3 Wall mounting of 132-200kW models

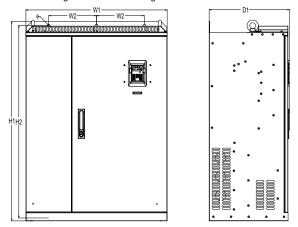



Figure D-4 Wall mounting of 220-315kW models

Table D-1 Wall-mounting dimensions (unit: mm)

|                   | Table b-1 Wall-Houriding difficultions (drift: Hill) |       |       |       |       |       |                      |  |  |  |  |  |
|-------------------|------------------------------------------------------|-------|-------|-------|-------|-------|----------------------|--|--|--|--|--|
|                   |                                                      |       |       |       |       |       | Installation<br>hole |  |  |  |  |  |
| Model             | W1                                                   | W2    | H1    | H2    | D1    | D2    | diameter             |  |  |  |  |  |
|                   |                                                      |       |       |       |       |       | (d)                  |  |  |  |  |  |
| GD100-0R4G-S2-PV  | 80.0                                                 | 60.0  | 160.0 | 150.0 | 123.5 | 120.3 | Ø 5                  |  |  |  |  |  |
| GD100-0R7G-S2-PV  | 80.0                                                 | 60.0  | 160.0 | 150.0 | 123.5 | 120.3 | Ø5                   |  |  |  |  |  |
| GD100-0R4G-SS2-PV | 80.0                                                 | 60.0  | 160.0 | 150.0 | 123.5 | 120.3 | Ø5                   |  |  |  |  |  |
| GD100-1R5G-S2-PV  | 80.0                                                 | 60.0  | 185.0 | 175.0 | 140.5 | 137.3 | Ø5                   |  |  |  |  |  |
| GD100-2R2G-S2-PV  | 80.0                                                 | 60.0  | 185.0 | 175.0 | 140.5 | 137.3 | Ø5                   |  |  |  |  |  |
| GD100-0R7G-SS2-PV | 80.0                                                 | 60.0  | 185.0 | 175.0 | 140.5 | 137.3 | Ø5                   |  |  |  |  |  |
| GD100-1R5G-SS2-PV | 80.0                                                 | 60.0  | 185.0 | 175.0 | 140.5 | 137.3 | Ø5                   |  |  |  |  |  |
| GD100-2R2G-SS2-PV | 80.0                                                 | 60.0  | 185.0 | 175.0 | 140.5 | 137.3 | Ø5                   |  |  |  |  |  |
| GD100-0R7G-4-PV   | 80.0                                                 | 60.0  | 185.0 | 175.0 | 140.5 | 137.3 | Ø 5                  |  |  |  |  |  |
| GD100-1R5G-4-PV   | 80.0                                                 | 60.0  | 185.0 | 175.0 | 140.5 | 137.3 | Ø 5                  |  |  |  |  |  |
| GD100-2R2G-4-PV   | 80.0                                                 | 60.0  | 185.0 | 175.0 | 140.5 | 137.3 | Ø 5                  |  |  |  |  |  |
| GD100-1R5G-2-PV   | 146.0                                                | 131.0 | 256.0 | 243.5 | 167.0 | 84.5  | Ø6                   |  |  |  |  |  |
| GD100-2R2G-2-PV   | 146.0                                                | 131.0 | 256.0 | 243.5 | 167.0 | 84.5  | Ø6                   |  |  |  |  |  |
| GD100-004G-4-PV   | 146.0                                                | 131.0 | 256.0 | 243.5 | 167.0 | 84.5  | Ø6                   |  |  |  |  |  |
| GD100-5R5G-4-PV   | 146.0                                                | 131.0 | 256.0 | 243.5 | 167.0 | 84.5  | Ø6                   |  |  |  |  |  |
| GD100-7R5G-4-PV   | 170.0                                                | 151.0 | 320.0 | 303.5 | 195.8 | 113.0 | Ø6                   |  |  |  |  |  |
| GD100-011G-4-PV   | 170.0                                                | 151.0 | 320.0 | 303.5 | 195.8 | 113.0 | Ø6                   |  |  |  |  |  |
| GD100-015G-4-PV   | 170.0                                                | 151.0 | 320.0 | 303.5 | 195.8 | 113.0 | Ø 6                  |  |  |  |  |  |
| GD100-004G-2-PV   | 170.0                                                | 151.0 | 320.0 | 303.5 | 195.8 | 113.0 | Ø6                   |  |  |  |  |  |
| GD100-5R5G-2-PV   | 170.0                                                | 151.0 | 320.0 | 303.5 | 195.8 | 113.0 | Ø 6                  |  |  |  |  |  |
| GD100-7R5G-2-PV   | 170.0                                                | 151.0 | 320.0 | 303.5 | 195.8 | 113.0 | Ø 6                  |  |  |  |  |  |
| GD100-018G-4-PV   | 200.0                                                | 185.0 | 340.6 | 328.6 | 183.3 | 104.5 | Ø 6                  |  |  |  |  |  |
| GD100-022G-4-PV   | 200.0                                                | 185.0 | 340.6 | 328.6 | 183.3 | 104.5 | Ø 6                  |  |  |  |  |  |
| GD100-030G-4-PV   | 250.0                                                | 230.0 | 400.0 | 380.0 | 202.0 | 123.5 | Ø 6                  |  |  |  |  |  |
| GD100-037G-4-PV   | 250.0                                                | 230.0 | 400.0 | 380.0 | 202.0 | 123.5 | Ø6                   |  |  |  |  |  |
| GD100-045G-4-PV   | 282.0                                                | 160.0 | 560.0 | 542.4 | 238.0 | 138.0 | Ø 9                  |  |  |  |  |  |
| GD100-055G-4-PV   | 282.0                                                | 160.0 | 560.0 | 542.4 | 238.0 | 138.0 | Ø 9                  |  |  |  |  |  |
| GD100-075G-4-PV   | 282.0                                                | 160.0 | 560.0 | 542.4 | 238.0 | 138.0 | Ø 9                  |  |  |  |  |  |
| GD100-090G-4-PV   | 338.0                                                | 200.0 | 554.0 | 534.0 | 326.2 | 1     | Ø 9.5                |  |  |  |  |  |
| GD100-110G-4-PV   | 338.0                                                | 200.0 | 554.0 | 534.0 | 326.2 | 1     | Ø 9.5                |  |  |  |  |  |
| GD100-132G-4-PV   | 500.0                                                | 360.0 | 874.0 | 850.0 | 360.0 | 1     | Ø 11                 |  |  |  |  |  |
| GD100-160G-4-PV   | 500.0                                                | 360.0 | 874.0 | 850.0 | 360.0 | 1     | Ø 11                 |  |  |  |  |  |
| GD100-185G-4-PV   | 500.0                                                | 360.0 | 874.0 | 850.0 | 360.0 | 1     | Ø 11                 |  |  |  |  |  |

| Model           | W1    | W2    | Н1    | H2    | D1    | D2 | Installation<br>hole<br>diameter<br>(d) |
|-----------------|-------|-------|-------|-------|-------|----|-----------------------------------------|
| GD100-200G-4-PV | 500.0 | 360.0 | 874.0 | 850.0 | 360.0 | /  | Ø 11                                    |
| GD100-220G-4-PV | 680.0 | 230.0 | 872.0 | 850.0 | 360.0 | /  | Ø13                                     |
| GD100-250G-4-PV | 680.0 | 230.0 | 872.0 | 850.0 | 360.0 | /  | Ø13                                     |
| GD100-280G-4-PV | 680.0 | 230.0 | 872.0 | 850.0 | 360.0 | 1  | Ø13                                     |
| GD100-315G-4-PV | 680.0 | 230.0 | 872.0 | 850.0 | 360.0 | /  | Ø13                                     |

# D.3 Dimensions of rail mounting

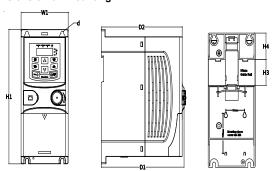



Figure D-5 Rail mounting of 0.4-2.2kW models

Table D-2 Rail-mounting dimensions (unit: mm)

| Model             | W1   | Н1    | Н3   | Н4   | D1    | D2    | Installation<br>hole<br>diameter<br>(d) |
|-------------------|------|-------|------|------|-------|-------|-----------------------------------------|
| GD100-0R4G-S2-PV  | 80.0 | 160.0 | 35.4 | 36.6 | 123.5 | 120.3 | Ø 5                                     |
| GD100-0R7G-S2-PV  | 80.0 | 160.0 | 35.4 | 36.6 | 123.5 | 120.3 | Ø 5                                     |
| GD100-0R4G-SS2-PV | 80.0 | 160.0 | 35.4 | 36.6 | 123.5 | 120.3 | Ø 5                                     |
| GD100-1R5G-S2-PV  | 80.0 | 185.0 | 35.4 | 36.6 | 140.5 | 137.3 | Ø 5                                     |
| GD100-2R2G-S2-PV  | 80.0 | 185.0 | 35.4 | 36.6 | 140.5 | 137.3 | Ø 5                                     |
| GD100-0R7G-SS2-PV | 80.0 | 185.0 | 35.4 | 36.6 | 140.5 | 137.3 | Ø 5                                     |
| GD100-1R5G-SS2-PV | 80.0 | 185.0 | 35.4 | 36.6 | 140.5 | 137.3 | Ø 5                                     |
| GD100-2R2G-SS2-PV | 80.0 | 185.0 | 35.4 | 36.6 | 140.5 | 137.3 | Ø 5                                     |

| Model           | W1   | Н1    | Н3   | Н4   | D1    | D2    | Installation<br>hole<br>diameter<br>(d) |
|-----------------|------|-------|------|------|-------|-------|-----------------------------------------|
| GD100-0R7G-4-PV | 80.0 | 185.0 | 35.4 | 36.6 | 140.5 | 137.3 | Ø 5                                     |
| GD100-1R5G-4-PV | 80.0 | 185.0 | 35.4 | 36.6 | 140.5 | 137.3 | Ø 5                                     |
| GD100-2R2G-4-PV | 80.0 | 185.0 | 35.4 | 36.6 | 140.5 | 137.3 | Ø 5                                     |

# D.4 Dimensions of flange mounting

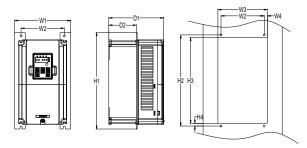



Figure D-6 Flange mounting of 1.5-75kW models

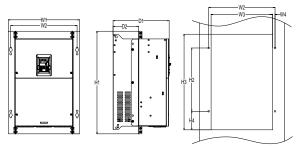



Figure D-7 Flange mounting of 90-110kW models

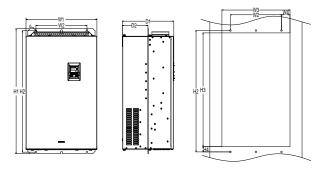



Figure D–8 Flange mounting of 132–200kW models
Table D–3 Flange-mounting dimensions (unit: mm)

| Model           | W1    | W2    | W3  | W4   | H1  | H2  | НЗ    | H4    | D1    | D2    | Installation<br>hole<br>diameter | Nut<br>specs |
|-----------------|-------|-------|-----|------|-----|-----|-------|-------|-------|-------|----------------------------------|--------------|
| GD100-1R5G-2-PV | 170.2 | 131   | 150 | 9.5  | 292 | 276 | 260   | 6     | 167   | 84.5  | Ø6                               | M5           |
| GD100-2R2G-2-PV | 170.2 | 131   | 150 | 9.5  | 292 | 276 | 260   | 6     | 167   | 84.5  | Ø6                               | M5           |
| GD100-004G-4-PV | 170.2 | 131   | 150 | 9.5  | 292 | 276 | 260   | 6     | 167   | 84.5  | Ø6                               | M5           |
| GD100-5R5G-4-PV | 170.2 | 131   | 150 | 9.5  | 292 | 276 | 260   | 6     | 167   | 84.5  | Ø6                               | M5           |
| GD100-004G-2-PV | 191.2 | 151   | 174 | 11.5 | 370 | 351 | 324   | 12    | 196.3 | 113   | Ø6                               | M5           |
| GD100-5R5G-2-PV | 191.2 | 151   | 174 | 11.5 | 370 | 351 | 324   | 12    | 196.3 | 113   | Ø6                               | M5           |
| GD100-7R5G-2-PV | 191.2 | 151   | 174 | 11.5 | 370 | 351 | 324   | 12    | 196.3 | 113   | Ø6                               | M5           |
| GD100-7R5G-4-PV | 191.2 | 151   | 174 | 11.5 | 370 | 351 | 324   | 12    | 196.3 | 113   | Ø6                               | M5           |
| GD100-011G-4-PV | 191.2 | 151   | 174 | 11.5 | 370 | 351 | 324   | 12    | 196.3 | 113   | Ø6                               | M5           |
| GD100-015G-4-PV | 191.2 | 151   | 174 | 11.5 | 370 | 351 | 324   | 12    | 196.3 | 113   | Ø6                               | M5           |
| GD100-018G-4-PV | 266   | 250   | 224 | 13   | 371 | 250 | 350.6 | 20.3  | 184.3 | 104   | Ø6                               | M5           |
| GD100-022G-4-PV | 266   | 250   | 224 | 13   | 371 | 250 | 350.6 | 20.3  | 184.3 | 104   | Ø6                               | M5           |
| GD100-030G-4-PV | 316   | 300   | 274 | 13   | 430 | 300 | 410   | 55    | 202   | 118.3 | Ø6                               | M5           |
| GD100-037G-4-PV | 316   | 300   | 274 | 13   | 430 | 300 | 410   | 55    | 202   | 118.3 | Ø6                               | M5           |
| GD100-045G-4-PV | 352   | 332   | 306 | 13   | 580 | 400 | 570   | 80    | 238   | 133.8 | Ø9                               | M8           |
| GD100-055G-4-PV | 352   | 332   | 306 | 13   | 580 | 400 | 570   | 80    | 238   | 133.8 | Ø9                               | M8           |
| GD100-075G-4-PV | 352   | 332   | 306 | 13   | 580 | 400 | 570   | 80    | 238   | 133.8 | Ø9                               | M8           |
| GD100-090G-4-PV | 418.5 | 389.5 | 361 | 14.2 | 600 | 370 | 559   | 108.5 | 326.2 | 149.5 | Ø9.5                             | M8           |
| GD100-110G-4-PV | 418.5 | 389.5 | 361 | 14.2 | 600 | 370 | 559   | 108.5 | 326.2 | 149.5 | Ø9.5                             | M8           |

| Model           | W1  | W2  | W3  | W4 | H1  | H2  | НЗ  | H4 | D1  | D2    | Installation<br>hole<br>diameter | Nut<br>specs |
|-----------------|-----|-----|-----|----|-----|-----|-----|----|-----|-------|----------------------------------|--------------|
| GD100-132G-4-PV | 500 | 360 | 480 | 60 | 874 | 850 | 796 | 37 | 358 | 178.5 | Ø 11                             | M10          |
| GD100-160G-4-PV | 500 | 360 | 480 | 60 | 874 | 850 | 796 | 37 | 358 | 178.5 | Ø 11                             | M10          |
| GD100-185G-4-PV | 500 | 360 | 480 | 60 | 874 | 850 | 796 | 37 | 358 | 178.5 | Ø 11                             | M10          |
| GD100-200G-4-PV | 500 | 360 | 480 | 60 | 874 | 850 | 796 | 37 | 358 | 178.5 | Ø 11                             | M10          |

Note: The flange mounting plate shall be used for flange mounting.

# D.5 Dimensions of floor mounting

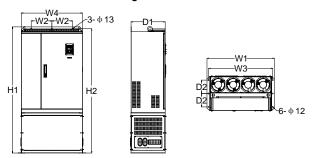



Figure D-9 Floor mounting of 220-315kW models (optional base)




Figure D–10 Floor mounting of 355–500kW models

Table D-4 Floor-mounting dimensions (unit: mm)

| Model           | W1  | W2  | W3  | W4  | H1   | H2   | D1  | D2  | Installati<br>on hole<br>diameter |
|-----------------|-----|-----|-----|-----|------|------|-----|-----|-----------------------------------|
| GD100-220G-4-PV | 750 | 230 | 714 | 680 | 1410 | 1390 | 380 | 150 | Ø13/12                            |
| GD100-250G-2-PV | 750 | 230 | 714 | 680 | 1410 | 1390 | 380 | 150 | Ø13/12                            |
| GD100-280G-4-PV | 750 | 230 | 714 | 680 | 1410 | 1390 | 380 | 150 | Ø13/12                            |
| GD100-315G-4-PV | 750 | 230 | 714 | 680 | 1410 | 1390 | 380 | 150 | Ø13/12                            |
| GD100-355G-4-PV | 620 | 230 | 573 | 1   | 1700 | 1678 | 560 | 240 | Ø22/12                            |
| GD100-400G-4-PV | 620 | 230 | 573 | 1   | 1700 | 1678 | 560 | 240 | Ø22/12                            |
| GD100-450G-4-PV | 620 | 230 | 573 | 1   | 1700 | 1678 | 560 | 240 | Ø22/12                            |
| GD100-500G-4-PV | 620 | 230 | 573 | 1   | 1700 | 1678 | 560 | 240 | Ø22/12                            |

# Appendix E Further information

### E.1 Product and service guiries

If you have any queries about the product, contact the local INVT office. Please provide the model and serial number of the product you query about. You can visit <a href="www.invt.com">www.invt.com</a> to find a list of INVT offices.

#### E.2 Feedback of INVT inverter manuals

Your comments on our manuals are welcome. Visit <a href="www.invt.com">www.invt.com</a>, directly contact online service personnel or choose Contact Us to obtain contact information.

### E.3 Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet. Visit <a href="https://www.invt.com">www.invt.com</a> and choose **Support > Download**.

Address: No. 1 Kunlun Mountain Road, Science & Technology

Solar Inverter

VFD

Rail Transit Traction System

Town, Gaoxin District, Suzhou, Jiangsu, China



The products are owned by Shenzhen INVT Electric Co., Ltd.

Two companies are commissioned to manufacture: (For product code, refer to the 2nd/3rd place of S/N on the name plate.)

Shenzhen INVT Electric Co., Ltd. (origin code: 01)

INVT Power Electronics (Suzhou) Co., Ltd. (origin code: 06)

PLC

DCIM

Shenzhen INVT Electric Co.,Ltd. (origin code: 01)
Address: INVT Guangming Technology Building, Songbai Road,

Matian, Guangming District, Shenzhen, China

Industrial Automation: HMI

Elevator Intelligent Control System

Energy & Power: UPS

New Energy Vehicle Powertrain System New Energy Vehicle Charging System

New Energy Vehicle Motor



Copyright© INVT.

Manual information may be subject to change without prior notice.

202510 (V2.0)

Servo System

SVG